Coastal urban areas are prone to serious disasters caused by landfalling tropical cyclones(TCs). Despite the crucial role of urban forcing in precipitation, how fine-scale urban features impact landfalling TC precipit...Coastal urban areas are prone to serious disasters caused by landfalling tropical cyclones(TCs). Despite the crucial role of urban forcing in precipitation, how fine-scale urban features impact landfalling TC precipitation remains poorly understood. In this study, high-resolution ensemble simulations of Typhoon Rumbia(2018), which crossed the Yangtze River Delta urban agglomeration, were conducted to analyze the potential urban impact on TC precipitation. Results show that the inner-core rainfall of Rumbia is strengthened by approximately 10% due to the urban impact near the landfall,whereas minor differences in outer-core rainfall are found when the urban impact is excluded. Further diagnostic analyses indicate that low-level upward motion is crucial for precipitation evolution, as both co-vary during landfall. Moreover, the frictionally induced upward motion plays a decisive role in enhancing the rainfall when the urban impacts are included.Urban surface friction can decelerate the tangential wind and therefore destroy the gradient balance and strengthen the radial wind within the boundary layer and thus can enhance upward motion. This study demonstrates that urban surface friction and related physical processes make the most significant contribution to landfalling TC rainfall enhancement.展开更多
The ability to forecast heavy rainfall associated with landfalling tropical cyclones (LTCs) can be improved with a better understanding of the mechanism of rainfall rates and distributions of LTCs. Research in the a...The ability to forecast heavy rainfall associated with landfalling tropical cyclones (LTCs) can be improved with a better understanding of the mechanism of rainfall rates and distributions of LTCs. Research in the area of LTCs has shown that associated heavy rainfall is related closely to mechanisms such as moisture transport, extratropical transition (ET), interaction with monsoon surge, land surface processes or topographic effects, mesoscale convective system activities within the LTC, and boundary layer energy transfer etc.. LTCs interacting with environmental weather systems, especially the westerly trough and mei-yu front, could change the rainfall rate and distribution associated with these mid-latitude weather systems. Recently improved technologies have contributed to advancements within the areas of quantitative precipitation estimation (QPE) and quantitative precipitation forecasting (QPF). More specifically, progress has been due primarily to remote sensing observations and mesoscale numerical models which incorporate advanced assimilation techniques. Such progress may provide the tools necessary to improve rainfall forecasting techniques associated with LTCs in the future.展开更多
A comparative analysis and quantitative diagnosis has been conducted of extreme rainfall associated with landfalling tropical cyclones(ERLTC)and non-extreme rainfall(NERLTC)using the dynamic composite analysis method....A comparative analysis and quantitative diagnosis has been conducted of extreme rainfall associated with landfalling tropical cyclones(ERLTC)and non-extreme rainfall(NERLTC)using the dynamic composite analysis method.Reanalysis data and the tropical cyclone precipitation dataset derived from the objective synoptic analysis technique were used.Results show that the vertically integrated water vapor transport(Q_(vt))during the ERLTC is significantly higher than that during the NERLTC.The Q_(vt)reaches a peak 1−2 days before the occurrence of the ERLTC and then decreases rapidly.There is a stronger convergence for both the Q_(vt)and the horizontal wind field during the ERLTC.The Q_(vt)convergence and the wind field convergence are mainly confined to the lower troposphere.The water vapor budget on the four boundaries of the tropical cyclone indicates that water vapor is input through all four boundaries before the occurrence of the ERLTC,whereas water vapor is output continuously from the northern boundary before the occurrence of the NERLTC.The water vapor inflow on both the western and southern boundaries of the ERLTC exceeds that during the NERLTC,mainly as a result of the different intensities of the southwest monsoonal surge in the surrounding environmental field.Within the background of the East Asian summer monsoon,the low-level jet accompanying the southwest monsoonal surge can increase the inflow of water vapor at both the western and southern boundaries during the ERLTC and therefore could enhance the convergence of the horizontal wind field and the water vapor flux,thereby resulting in the ERLTC.On the other hand,the southwest monsoonal surge decreases the zonal mean steering flow,which leads to a slower translation speed for the tropical cyclone associated with the ERLTC.Furthermore,a dynamic monsoon surge index(DMSI)defined here can be simply linked with the ERLTC and could be used as a new predictor for future operational forecasting of ERLTC.展开更多
Based on observed rainfall data, this study makes a composite analysis of rainfall asymmetry in tropical cyclones(TCs) after making landfall in Guangdong province(GD) during 1998—2015. There are 3.0 TCs per year on a...Based on observed rainfall data, this study makes a composite analysis of rainfall asymmetry in tropical cyclones(TCs) after making landfall in Guangdong province(GD) during 1998—2015. There are 3.0 TCs per year on average making landfall in GD and west of GD(WGD) has the most landfall TCs. Most of TCs make landfall in June,July, August, and September at the intensities of TY, STS, and TS. On average, there is more rainfall in the southwest quadrant of TC in CGD(center of GD), WGD, and GD as a whole, and the maximum rainfall is located in the southwest near the TC center. The mean TC rainfall in the east of GD(EGD) leans to the eastern side of TC. The TC rainfall distributions in June, July, August, and September all lean to the southwest quadrant and the maximum rainfall is located in the southwest near the TC center. The same features are found in the mean rainfall of TD, TS, STS, TY,and STY. The maximum rainfall is mainly in the downshear of vertical wind shear. Vertical wind shear is probably the dominate factor that determines asymmetric rainfall distribution of TCs in GD. Storm motion has little connection with TC rainfall asymmetry in GD.展开更多
A heavy rainfall process, which occurred in Shanghai during 5-6 August, 2001 from a landfalling tropical depression (TD),is examined with a control numerical experiment based on MM5 model. It is found that the contour...A heavy rainfall process, which occurred in Shanghai during 5-6 August, 2001 from a landfalling tropical depression (TD),is examined with a control numerical experiment based on MM5 model. It is found that the contours of generalized equivalent potential temperature (θ*) are almost vertical with respect to horizontal surfaces near the TD center and more densely distributed than those of equivalent potential temperature (θe).Because the atmosphere is non-uniformly saturated in reality, θ* takes the place of θe in the definition of convective vorticity vector (CVV) so that a new vector, namely the generalized convective vorticity vector (CVV*), is applied in this study. Since CVV* can reflect both the secondary circulation and the variation of horizontal moist baroclinicity, the vertical integration of vertical component of CVV* is found, in this study, to represent the rainfall areas in the TD case better than potential vorticity (PV), moist potential vorticity (MPV), generalized moist potential vorticity (Pm), and CVV, with high-value area of CVV* corresponding to heavy-rainfall area. Moreover, the analysis from CVV* implies that the Hangzhou Bay might play an important role in the heavy rain process. A sensitivity experiment without the Hangzhou Bay is then designed and compared with the control run. It is found that the CVV* becomes weaker than that in the control run, implying that the elimination of Hangzhou Bay results in reduced rainfall. Further analyses show that the Hangzhou Bay provides sufficient water vapor and surface heat flux to the TD system, which is very important to the genesis and development of mesoscale cloud clusters around the TD and the associated heavy rainfall.展开更多
In preparation for the Fourth International Workshop on Tropical Cyclone Landfall Processes(IWTCLP-IV), a summary of recent research studies and the forecasting challenges of tropical cyclone(TC) rainfall has been pre...In preparation for the Fourth International Workshop on Tropical Cyclone Landfall Processes(IWTCLP-IV), a summary of recent research studies and the forecasting challenges of tropical cyclone(TC) rainfall has been prepared. The extreme rainfall accumulations in Hurricane Harvey(2017) near Houston, Texas and Typhoon Damrey(2017) in southern Vietnam are examples of the TC rainfall forecasting challenges. Some progress is being made in understanding the internal rainfall dynamics via case studies. Environmental effects such as vertical wind shear and terrain-induced rainfall have been studied, as well as the rainfall relationships with TC intensity and structure. Numerical model predictions of TC-related rainfall have been improved via data assimilation, microphysics representation, improved resolution, and ensemble quantitative precipitation forecast techniques. Some attempts have been made to improve the verification techniques as well. A basic forecast challenge for TC-related rainfall is monitoring the existing rainfall distribution via satellite or coastal radars, or from over-land rain gauges. Forecasters also need assistance in understanding how seemingly similar landfall locations relative to the TC experience different rainfall distributions. In addition, forecasters must cope with anomalous TC activity and landfall distributions in response to various environmental effects.展开更多
In recent work,three physical factors of the Dynamical-Statistical-Analog Ensemble Forecast Model for Landfalling Typhoon Precipitation(DSAEF_LTP model)have been introduced,namely,tropical cyclone(TC)track,TC landfall...In recent work,three physical factors of the Dynamical-Statistical-Analog Ensemble Forecast Model for Landfalling Typhoon Precipitation(DSAEF_LTP model)have been introduced,namely,tropical cyclone(TC)track,TC landfall season,and TC intensity.In the present study,we set out to test the forecasting performance of the improved model with new similarity regions and ensemble forecast schemes added.Four experiments associated with the prediction of accumulated precipitation were conducted based on 47 landfalling TCs that occurred over South China during 2004-2018.The first experiment was designed as the DSAEF_LTP model with TC track,TC landfall season,and intensity(DSAEF_LTP-1).The other three experiments were based on the first experiment,but with new ensemble forecast schemes added(DSAEF_LTP-2),new similarity regions added(DSAEF_LTP-3),and both added(DSAEF_LTP-4),respectively.Results showed that,after new similarity regions added into the model(DSAEF_LTP-3),the forecasting performance of the DSAEF_LTP model for heavy rainfall(accumulated precipitation≥250 mm and≥100 mm)improved,and the sum of the threat score(TS250+TS100)increased by 4.44%.Although the forecasting performance of DSAEF_LTP-2 was the same as that of DSAEF_LTP-1,the forecasting performance was significantly improved and better than that of DSAEF_LTP-3 when the new ensemble schemes and similarity regions were added simultaneously(DSAEF_LTP-4),with the TS increasing by 25.36%.Moreover,the forecasting performance of the four experiments was compared with four operational numerical weather prediction models,and the comparison indicated that the DSAEF_LTP model showed advantages in predicting heavy rainfall.Finally,some issues associated with the experimental results and future improvements of the DSAEF_LTP model were discussed.展开更多
As one of the most devastating tropical cyclones over the western North Pacific Ocean,Super Typhoon Lekima(2019)has caused a wide range of heavy rainfall in China.Based on the CMA Multi-source merged Precipitation Ana...As one of the most devastating tropical cyclones over the western North Pacific Ocean,Super Typhoon Lekima(2019)has caused a wide range of heavy rainfall in China.Based on the CMA Multi-source merged Precipitation Analysis System(CMPAS)-hourly data set,both the temporal and spatial distribution of extreme rainfall is analyzed.It is found that the heavy rainfall associated with Lekima includes three main episodes with peaks at 3,14 and 24 h after landfall,respectively.The first two rainfall episodes are related to the symmetric outburst of the inner rainband and the persistence of outer rainband.The third rainfall episode is caused by the influence of cold,dry air from higher latitudes and the peripheral circulation of the warm moist tropical storm.The averaged rainrate of inner rainbands underwent an obvious outburst within 6 h after landfall.The asymmetric component of the inner rainbands experienced a transport from North(West)quadrant to East(South)quadrant after landfall which was related to the storm motion other than the Vertical Wind Shear(VWS).Meanwhile the outer rainband in the vicinity of three times of the Radius of Maximum Wind(RMW)was active over a 12-h period since the decay of the inner rainband.The asymmetric component of the outer rainband experienced two significant cyclonical migrations in the northern semicircle.展开更多
基金supported by the National Science Foundation of China (Grant Nos. 42088101 and 42175005)by the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX22_1137)。
文摘Coastal urban areas are prone to serious disasters caused by landfalling tropical cyclones(TCs). Despite the crucial role of urban forcing in precipitation, how fine-scale urban features impact landfalling TC precipitation remains poorly understood. In this study, high-resolution ensemble simulations of Typhoon Rumbia(2018), which crossed the Yangtze River Delta urban agglomeration, were conducted to analyze the potential urban impact on TC precipitation. Results show that the inner-core rainfall of Rumbia is strengthened by approximately 10% due to the urban impact near the landfall,whereas minor differences in outer-core rainfall are found when the urban impact is excluded. Further diagnostic analyses indicate that low-level upward motion is crucial for precipitation evolution, as both co-vary during landfall. Moreover, the frictionally induced upward motion plays a decisive role in enhancing the rainfall when the urban impacts are included.Urban surface friction can decelerate the tangential wind and therefore destroy the gradient balance and strengthen the radial wind within the boundary layer and thus can enhance upward motion. This study demonstrates that urban surface friction and related physical processes make the most significant contribution to landfalling TC rainfall enhancement.
基金financed by the National Grand Fundamental Research 973 Program of China (Grant Nos. 2009CB421504 and 2004CB418301)the Key Program of the National Natural Science Foun-dation of China (NSFC) (Grant No. 40730948)the NSFC (Grant Nos. 40575018, 40675033 and 40975032)
文摘The ability to forecast heavy rainfall associated with landfalling tropical cyclones (LTCs) can be improved with a better understanding of the mechanism of rainfall rates and distributions of LTCs. Research in the area of LTCs has shown that associated heavy rainfall is related closely to mechanisms such as moisture transport, extratropical transition (ET), interaction with monsoon surge, land surface processes or topographic effects, mesoscale convective system activities within the LTC, and boundary layer energy transfer etc.. LTCs interacting with environmental weather systems, especially the westerly trough and mei-yu front, could change the rainfall rate and distribution associated with these mid-latitude weather systems. Recently improved technologies have contributed to advancements within the areas of quantitative precipitation estimation (QPE) and quantitative precipitation forecasting (QPF). More specifically, progress has been due primarily to remote sensing observations and mesoscale numerical models which incorporate advanced assimilation techniques. Such progress may provide the tools necessary to improve rainfall forecasting techniques associated with LTCs in the future.
基金the National Science Foundation of China(Grant Nos.41775048,42030611)National Basic Research Program of China(Grant No.2015CB452804)the Open Grants of the State Key Laboratory of Severe Weather(Grant No.2020LASW-B06).
文摘A comparative analysis and quantitative diagnosis has been conducted of extreme rainfall associated with landfalling tropical cyclones(ERLTC)and non-extreme rainfall(NERLTC)using the dynamic composite analysis method.Reanalysis data and the tropical cyclone precipitation dataset derived from the objective synoptic analysis technique were used.Results show that the vertically integrated water vapor transport(Q_(vt))during the ERLTC is significantly higher than that during the NERLTC.The Q_(vt)reaches a peak 1−2 days before the occurrence of the ERLTC and then decreases rapidly.There is a stronger convergence for both the Q_(vt)and the horizontal wind field during the ERLTC.The Q_(vt)convergence and the wind field convergence are mainly confined to the lower troposphere.The water vapor budget on the four boundaries of the tropical cyclone indicates that water vapor is input through all four boundaries before the occurrence of the ERLTC,whereas water vapor is output continuously from the northern boundary before the occurrence of the NERLTC.The water vapor inflow on both the western and southern boundaries of the ERLTC exceeds that during the NERLTC,mainly as a result of the different intensities of the southwest monsoonal surge in the surrounding environmental field.Within the background of the East Asian summer monsoon,the low-level jet accompanying the southwest monsoonal surge can increase the inflow of water vapor at both the western and southern boundaries during the ERLTC and therefore could enhance the convergence of the horizontal wind field and the water vapor flux,thereby resulting in the ERLTC.On the other hand,the southwest monsoonal surge decreases the zonal mean steering flow,which leads to a slower translation speed for the tropical cyclone associated with the ERLTC.Furthermore,a dynamic monsoon surge index(DMSI)defined here can be simply linked with the ERLTC and could be used as a new predictor for future operational forecasting of ERLTC.
基金Natural Science Foundation of Guangdong,China(2016A030310009)National Natural Science Foundation of China(41475061+2 种基金4167501941675021)Guangzhou Science and Technology Plan Project(201510010218)
文摘Based on observed rainfall data, this study makes a composite analysis of rainfall asymmetry in tropical cyclones(TCs) after making landfall in Guangdong province(GD) during 1998—2015. There are 3.0 TCs per year on average making landfall in GD and west of GD(WGD) has the most landfall TCs. Most of TCs make landfall in June,July, August, and September at the intensities of TY, STS, and TS. On average, there is more rainfall in the southwest quadrant of TC in CGD(center of GD), WGD, and GD as a whole, and the maximum rainfall is located in the southwest near the TC center. The mean TC rainfall in the east of GD(EGD) leans to the eastern side of TC. The TC rainfall distributions in June, July, August, and September all lean to the southwest quadrant and the maximum rainfall is located in the southwest near the TC center. The same features are found in the mean rainfall of TD, TS, STS, TY,and STY. The maximum rainfall is mainly in the downshear of vertical wind shear. Vertical wind shear is probably the dominate factor that determines asymmetric rainfall distribution of TCs in GD. Storm motion has little connection with TC rainfall asymmetry in GD.
基金The State 973 Program (2009CB421505)National Natural Sciences Foundation of China (40921160381,40875039,40905020,41005033,40905029)+2 种基金Projects for Public Welfare (Meteorology) of China (GYHY200906002,GYHY201006008)Shanghai Meteorological Bureau (MS201202)Fund for Graduate Renovative Education of Jiangsu Province
文摘A heavy rainfall process, which occurred in Shanghai during 5-6 August, 2001 from a landfalling tropical depression (TD),is examined with a control numerical experiment based on MM5 model. It is found that the contours of generalized equivalent potential temperature (θ*) are almost vertical with respect to horizontal surfaces near the TD center and more densely distributed than those of equivalent potential temperature (θe).Because the atmosphere is non-uniformly saturated in reality, θ* takes the place of θe in the definition of convective vorticity vector (CVV) so that a new vector, namely the generalized convective vorticity vector (CVV*), is applied in this study. Since CVV* can reflect both the secondary circulation and the variation of horizontal moist baroclinicity, the vertical integration of vertical component of CVV* is found, in this study, to represent the rainfall areas in the TD case better than potential vorticity (PV), moist potential vorticity (MPV), generalized moist potential vorticity (Pm), and CVV, with high-value area of CVV* corresponding to heavy-rainfall area. Moreover, the analysis from CVV* implies that the Hangzhou Bay might play an important role in the heavy rain process. A sensitivity experiment without the Hangzhou Bay is then designed and compared with the control run. It is found that the CVV* becomes weaker than that in the control run, implying that the elimination of Hangzhou Bay results in reduced rainfall. Further analyses show that the Hangzhou Bay provides sufficient water vapor and surface heat flux to the TD system, which is very important to the genesis and development of mesoscale cloud clusters around the TD and the associated heavy rainfall.
文摘In preparation for the Fourth International Workshop on Tropical Cyclone Landfall Processes(IWTCLP-IV), a summary of recent research studies and the forecasting challenges of tropical cyclone(TC) rainfall has been prepared. The extreme rainfall accumulations in Hurricane Harvey(2017) near Houston, Texas and Typhoon Damrey(2017) in southern Vietnam are examples of the TC rainfall forecasting challenges. Some progress is being made in understanding the internal rainfall dynamics via case studies. Environmental effects such as vertical wind shear and terrain-induced rainfall have been studied, as well as the rainfall relationships with TC intensity and structure. Numerical model predictions of TC-related rainfall have been improved via data assimilation, microphysics representation, improved resolution, and ensemble quantitative precipitation forecast techniques. Some attempts have been made to improve the verification techniques as well. A basic forecast challenge for TC-related rainfall is monitoring the existing rainfall distribution via satellite or coastal radars, or from over-land rain gauges. Forecasters also need assistance in understanding how seemingly similar landfall locations relative to the TC experience different rainfall distributions. In addition, forecasters must cope with anomalous TC activity and landfall distributions in response to various environmental effects.
基金National Key R&D Program of China(2019YFC1510205)Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province(SCSF202202)+1 种基金Shenzhen Science and Technology Project(KCXFZ2020122173610028)Jiangsu Collaborative Innovation Center for Climate Change。
文摘In recent work,three physical factors of the Dynamical-Statistical-Analog Ensemble Forecast Model for Landfalling Typhoon Precipitation(DSAEF_LTP model)have been introduced,namely,tropical cyclone(TC)track,TC landfall season,and TC intensity.In the present study,we set out to test the forecasting performance of the improved model with new similarity regions and ensemble forecast schemes added.Four experiments associated with the prediction of accumulated precipitation were conducted based on 47 landfalling TCs that occurred over South China during 2004-2018.The first experiment was designed as the DSAEF_LTP model with TC track,TC landfall season,and intensity(DSAEF_LTP-1).The other three experiments were based on the first experiment,but with new ensemble forecast schemes added(DSAEF_LTP-2),new similarity regions added(DSAEF_LTP-3),and both added(DSAEF_LTP-4),respectively.Results showed that,after new similarity regions added into the model(DSAEF_LTP-3),the forecasting performance of the DSAEF_LTP model for heavy rainfall(accumulated precipitation≥250 mm and≥100 mm)improved,and the sum of the threat score(TS250+TS100)increased by 4.44%.Although the forecasting performance of DSAEF_LTP-2 was the same as that of DSAEF_LTP-1,the forecasting performance was significantly improved and better than that of DSAEF_LTP-3 when the new ensemble schemes and similarity regions were added simultaneously(DSAEF_LTP-4),with the TS increasing by 25.36%.Moreover,the forecasting performance of the four experiments was compared with four operational numerical weather prediction models,and the comparison indicated that the DSAEF_LTP model showed advantages in predicting heavy rainfall.Finally,some issues associated with the experimental results and future improvements of the DSAEF_LTP model were discussed.
基金supported by Postdoctoral Science Foundation of China(No.2019M661342).
文摘As one of the most devastating tropical cyclones over the western North Pacific Ocean,Super Typhoon Lekima(2019)has caused a wide range of heavy rainfall in China.Based on the CMA Multi-source merged Precipitation Analysis System(CMPAS)-hourly data set,both the temporal and spatial distribution of extreme rainfall is analyzed.It is found that the heavy rainfall associated with Lekima includes three main episodes with peaks at 3,14 and 24 h after landfall,respectively.The first two rainfall episodes are related to the symmetric outburst of the inner rainband and the persistence of outer rainband.The third rainfall episode is caused by the influence of cold,dry air from higher latitudes and the peripheral circulation of the warm moist tropical storm.The averaged rainrate of inner rainbands underwent an obvious outburst within 6 h after landfall.The asymmetric component of the inner rainbands experienced a transport from North(West)quadrant to East(South)quadrant after landfall which was related to the storm motion other than the Vertical Wind Shear(VWS).Meanwhile the outer rainband in the vicinity of three times of the Radius of Maximum Wind(RMW)was active over a 12-h period since the decay of the inner rainband.The asymmetric component of the outer rainband experienced two significant cyclonical migrations in the northern semicircle.