The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme...The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens.展开更多
The paper discusses the design, fabrication and the execution of the cladding supported by steel trusses and curtain wall of a sports club. The cladding and the curtain walls were subjected to a wind load of 1.2 Kpa c...The paper discusses the design, fabrication and the execution of the cladding supported by steel trusses and curtain wall of a sports club. The cladding and the curtain walls were subjected to a wind load of 1.2 Kpa considering basic wind speed of 25 m/s as per the project specifications. The first part of the paper deals with the cladding work of the canopy that consist of a 4 mm thick aluminium composite panels supported by steel trusses extended from the main structure. Two types of steel trusses were provided, the main truss connected to the space truss, whereas the intermediate truss connected to channels. Both trusses were spaced at 2.5 m centre to centre. These trusses were fabricated at factory and transported to the site for installation. The second part of the paper is related to the curtain wall design having Maximum Mullion spacing of 2 m, considered as worst scenario for the design calculations. The maximum Mullion height was 5.55 m, adopted in the calculations with bottom and top pinned connection. The Technal system was adopted for the design of mullions and transoms. Design was carried out using numerical modeling with CSI SAP2000 for cladding and its supporting structures. The bracket was realized and checked for the corresponding induced forces. All the structural systems were found safe according to different acceptance criterion.展开更多
基金National Natural Science Foundation of China(Grant Nos.51908188 and 51938011).
文摘The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens.
文摘The paper discusses the design, fabrication and the execution of the cladding supported by steel trusses and curtain wall of a sports club. The cladding and the curtain walls were subjected to a wind load of 1.2 Kpa considering basic wind speed of 25 m/s as per the project specifications. The first part of the paper deals with the cladding work of the canopy that consist of a 4 mm thick aluminium composite panels supported by steel trusses extended from the main structure. Two types of steel trusses were provided, the main truss connected to the space truss, whereas the intermediate truss connected to channels. Both trusses were spaced at 2.5 m centre to centre. These trusses were fabricated at factory and transported to the site for installation. The second part of the paper is related to the curtain wall design having Maximum Mullion spacing of 2 m, considered as worst scenario for the design calculations. The maximum Mullion height was 5.55 m, adopted in the calculations with bottom and top pinned connection. The Technal system was adopted for the design of mullions and transoms. Design was carried out using numerical modeling with CSI SAP2000 for cladding and its supporting structures. The bracket was realized and checked for the corresponding induced forces. All the structural systems were found safe according to different acceptance criterion.