Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a...Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.展开更多
Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the hig...Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the high energy costs borne by consumers.The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data,including information on client consumption,which may be used to identify electricity theft using machine learning and deep learning techniques.Moreover,there also exist different solutions such as hardware-based solutions to detect electricity theft that may require human resources and expensive hardware.Computer-based solutions are presented in the literature to identify electricity theft but due to the dimensionality curse,class imbalance issue and improper hyper-parameter tuning of such models lead to poor performance.In this research,a hybrid deep learning model abbreviated as RoGRUT is proposed to detect electricity theft as amalicious and non-malicious activity.The key steps of the RoGRUT are data preprocessing that covers the problem of class imbalance,feature extraction and final theft detection.Different advanced-level models like RoBERTa is used to address the curse of dimensionality issue,the near miss for class imbalance,and transfer learning for classification.The effectiveness of the RoGRUTis evaluated using the dataset fromactual smartmeters.A significant number of simulations demonstrate that,when compared to its competitors,the RoGRUT achieves the best classification results.The performance evaluation of the proposed model revealed exemplary results across variousmetrics.The accuracy achieved was 88%,with precision at an impressive 86%and recall reaching 84%.The F1-Score,a measure of overall performance,stood at 85%.Furthermore,themodel exhibited a noteworthyMatthew correlation coefficient of 78%and excelled with an area under the curve of 91%.展开更多
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u...False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal selfattention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness.展开更多
Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightene...Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.展开更多
To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article com...To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article combines wind turbine monitoring data with numerical weather prediction(NWP)data to create a suitable wind power prediction framework for distributed grids.First,high-precision NWP of the turbine range is achieved using weather research and forecasting models(WRF),and Kriging interpolation locates predicted meteorological data at the turbine site.Then,a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion curve,and historical power is reconstructed using variational mode decomposition(VMD)filtering to form input variables in chronological order.Finally,input variables of a single turbine enter the temporal convolutional network(TCN)to complete initial feature extraction,and then integrate the outputs of all TCN layers using Long Short Term Memory Networks(LSTM)to obtain power prediction sequences for all turbine positions.The proposed method was tested on a wind farm connected to a distributed power grid,and the results showed it to be superior to existing typical methods.展开更多
After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and de...After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.展开更多
Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellit...Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellites,inverting the Earth’s three-dimensional conductivity distribution on a global scale becomes attainable.A key requirement in the global conductivity inversion is to have a forward solver with high-accuracy and efficiency.In this study,a finite volume method for global electromagnetic induction forward modeling is developed based on unstructured grids.Arbitrary polyhedral grids are supported in our algorithms to obtain high geometric adaptability.We employ a cell-centered collocated variable arrangement which allows convenient discretization for complex geometries and straightforward implementation of multigrid technique.To validate the method,we test our code with two synthetic models and compare our finite volume results with an analytical solution and a finite element numerical solution.Good agreements are observed between our solution and other results,indicating acceptable accuracy of the proposed method.展开更多
In this work, blast disruption and mitigation using 3D grids/perforated plates were tested for underbelly and side protection of vehicles. Two vehicle simulants were used: a small-scale one for side vehicle protection...In this work, blast disruption and mitigation using 3D grids/perforated plates were tested for underbelly and side protection of vehicles. Two vehicle simulants were used: a small-scale one for side vehicle protection assessment and a true-to-scale simulant for underbelly protection testing. The deformation of target plates was assessed. These were either unprotected or protected by three different types of disruptors. The first disruptor was made of a sandwich structure of two perforated plates filled with a thin aluminum structure allowing the air to pass through. The two other disruptors were made of pieces of cast metallic foam. Two different kinds of foams were used: one with large cells and the second one with small cells. Beforehand, the mitigation efficiency of the disruptors was evaluated using an explosivedriven shock tube(EDST). The experiments showed that blast disruption/mitigation by 3D grid/perforated plate structures was not suitable for vehicle side protection. However, 3D grids/perforated structures proved to be relatively effective for underbelly protection compared to an equivalent mass of steel.展开更多
The need for a flexible,dynamic,and decentralized energy market has rapidly grown in recent years.As a matter of fact,Industry 4.0 and Smart Grids are pursuing a path of automation of operations to insure all the step...The need for a flexible,dynamic,and decentralized energy market has rapidly grown in recent years.As a matter of fact,Industry 4.0 and Smart Grids are pursuing a path of automation of operations to insure all the steps among consumers and producers are getting closer.This leads towards solutions that exploit the paradigm of public blockchain,which represents the best platform to design flat and liquid markets for which providing trust and accountability to mutual interactions becomes crucial.On the other hand,one of the risks arising in this situation is that personal information is exposed to the network,with intolerable threats to privacy.In this paper,we propose a solution for energy trading,based on the blockchain Ethereum and Smart Contracts.The solution aims to be a concrete proposal to satisfy the needs of energy trading in smart grids,including the important feature that no information about the identity of the peers of the network is disclosed in advance.展开更多
As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the po...As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays.展开更多
Smart cities depend highly on an intelligent electrical networks to provide a reliable,safe,and clean power supplies.A smart grid achieves such aforementioned power supply by ensuring resilient energy delivery,which p...Smart cities depend highly on an intelligent electrical networks to provide a reliable,safe,and clean power supplies.A smart grid achieves such aforementioned power supply by ensuring resilient energy delivery,which presents opportunities to improve the cost-effectiveness of power supply and minimize environmental impacts.A systematic evaluation of the comprehensive benefits brought by smart grid to smart cities can provide necessary theoretical fundamentals for urban planning and construction towards a sustainable energy future.However,most of the present methods of assessing smart cities do not fully take into account the benefits expected from the smart grid.To comprehensively evaluate the development levels of smart cities while revealing the supporting roles of smart grids,this article proposes a model of smart city development needs from the perspective of residents’needs based on Maslow’s Hierarchy of Needs theory,which serves the primary purpose of building a smart city.By classifying and reintegrating the needs,an evaluation index system of smart grids supporting smart cities was further constructed.A case analysis concluded that smart grids,as an essential foundation and objective requirement for smart cities,are important in promoting scientific urban management,intelligent infrastructure,refined public services,efficient energy utilization,and industrial development and modernization.Further optimization suggestions were given to the city analyzed in the case include strengthening urban management and infrastructure constructions,such as electric vehicle charging facilities and wireless coverage.展开更多
The invention of Phasor Measurement Units(PMUs)produce synchronized phasor measurements with high resolution real time monitoring and control of power system in smart grids that make possible.PMUs are used in transmit...The invention of Phasor Measurement Units(PMUs)produce synchronized phasor measurements with high resolution real time monitoring and control of power system in smart grids that make possible.PMUs are used in transmitting data to Phasor Data Concentrators(PDC)placed in control centers for monitoring purpose.A primary concern of system operators in control centers is maintaining safe and efficient operation of the power grid.This can be achieved by continuous monitoring of the PMU data that contains both normal and abnormal data.The normal data indicates the normal behavior of the grid whereas the abnormal data indicates fault or abnormal conditions in power grid.As a result,detecting anomalies/abnormal conditions in the fast flowing PMU data that reflects the status of the power system is critical.A novel methodology for detecting and categorizing abnormalities in streaming PMU data is presented in this paper.The proposed method consists of three modules namely,offline Gaussian Mixture Model(GMM),online GMM for identifying anomalies and clustering ensemble model for classifying the anomalies.The significant features of the proposed method are detecting anomalies while taking into account of multivariate nature of the PMU dataset,adapting to concept drift in the flowing PMU data without retraining the existing model unnecessarily and classifying the anomalies.The proposed model is implemented in Python and the testing results prove that the proposed model is well suited for detection and classification of anomalies on the fly.展开更多
The hybrid dc circuit breaker(HCB)has the advantages of fast action speed and low operating loss,which is an idealmethod for fault isolation ofmulti-terminal dc grids.Formulti-terminal dc grids that transmit power thr...The hybrid dc circuit breaker(HCB)has the advantages of fast action speed and low operating loss,which is an idealmethod for fault isolation ofmulti-terminal dc grids.Formulti-terminal dc grids that transmit power through overhead lines,HCBs are required to have reclosing capability due to the high fault probability and the fact that most of the faults are temporary faults.To avoid the secondary fault strike and equipment damage that may be caused by the reclosing of the HCB when the permanent fault occurs,an adaptive reclosing scheme based on traveling wave injection is proposed in this paper.The scheme injects traveling wave signal into the fault dc line through the additionally configured auxiliary discharge branch in the HCB,and then uses the reflection characteristic of the traveling wave signal on the dc line to identify temporary and permanent faults,to be able to realize fast reclosing when the temporary fault occurs and reliably avoid reclosing after the permanent fault occurs.The test results in the simulation model of the four-terminal dc grid show that the proposed adaptive reclosing scheme can quickly and reliably identify temporary and permanent faults,greatly shorten the power outage time of temporary faults.In addition,it has the advantages of easiness to implement,high reliability,robustness to high-resistance fault and no dead zone,etc.展开更多
Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurat...Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurate and not affected by strong subsurface structure complexity and horizontal velocity variations. The difference method based on triangular grids maintains the simplicity of the difference method and the precision of the finite element method. It can be used directly for forward modeling on models with complex top surfaces and migration without statics preprocessing. We apply a finite difference method based on triangular grids for post-stack reverse-time migration for the first time. Tests on model data verify that the combination of the two methods can achieve near-perfect results in application.展开更多
The aim is to study the set of subsets of grids of the Waterloo language from the point of view of abstract algebra and graph theory. The study was conducted using the library for working with transition graphs of non...The aim is to study the set of subsets of grids of the Waterloo language from the point of view of abstract algebra and graph theory. The study was conducted using the library for working with transition graphs of nondeterministic finite automata NFALib implemented by one of the authors in C#, as well as statistical methods for analyzing algorithms. The results are regularities obtained when considering semilattices on a set of subsets of grids of the Waterloo language. It follows from the results obtained that the minimum covering automaton equivalent to the Waterloo automaton can be obtained by adding one additional to the minimum covering set of grids. .展开更多
For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grid...For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.展开更多
Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that...Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that exist among different software.Here,a series of algorithms is developed and integrated in the Petrel2ANSYS to carry out two-way conversions between the 3D attribute models that employ corner-point grids used in Petrel and the 3D finite-element grids used in ANSYS.Furthermore,a modified method of simulating stress characteristics and analyzing stress fields using the finite-element method and multiple finely resolved 3D models is proposed.Compared to the traditional finite-element simulation-based approach,which involves describing the heterogeneous within a rock body or sedimentary facies in detail and simulating the stress distribution,the single grid cell-based approach focuses on a greater degree on combining the rock mechanics described by 3D corner-point grid models with the finely resolved material characteristics of 3D finite-element models.Different models that use structured and unstructured grids are verified in Petrel2ANSYS to assess the feasibility.In addition,with minor modifications,platforms based on the present algorithms can be extended to other models to convert corner-point grids to the finite-element grids constructed by other software.展开更多
To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated ...To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated QoS-aware job dispatching policy is proposed, which correlates priorities of incoming jobs used for job selecting at the local scheduler of the grid node with the job dispatching policies at the global scheduler for computational grids. The stochastic high-level Petri net (SHLPN) model of a two-level hierarchy computational grid architecture is presented, and a model refinement is made to reduce the complexity of the model solution. A performance analysis technique based on the SHLPN is proposed to investigate the QoS-aware job scheduling policy. Numerical results show that the QoS-aware job dispatching policy outperforms the QoS-unaware job dispatching policy in balancing the high-priority jobs, and thus enables priority-based QoS.展开更多
It has been evident that the theory and methods of dynamic derivatives are playing an increasingly important role in hybrid modeling and computations. Being constructed on various kinds of hybrid grids, that is, tim...It has been evident that the theory and methods of dynamic derivatives are playing an increasingly important role in hybrid modeling and computations. Being constructed on various kinds of hybrid grids, that is, time scales, dynamic derivatives offer superior accuracy and flexibility in approximating mathematically important natural processes with hard-to-predict singularities, such as the epidemic growth with unpredictable jump sizes and option market changes with high uncertainties, as compared with conventional derivatives. In this article, we shall review the novel new concepts, explore delicate relations between the most frequently used second-order dynamic derivatives and conventional derivatives. We shall investigate necessary conditions for guaranteeing the consistency between the two derivatives. We will show that such a consistency may never exist in general. This implies that the dynamic derivatives provide entirely different new tools for sensitive modeling and approximations on hybrid grids. Rigorous error analysis will be given via asymptotic expansions for further modeling and computational applications. Numerical experiments will also be given.展开更多
基金supported by the National Nature Science Foundation of China under 62203376the Science and Technology Plan of Hebei Education Department under QN2021139+1 种基金the Nature Science Foundation of Hebei Province under F2021203043the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.
基金a grant from the Center of Excellence in Information Assurance(CoEIA),KSU.
文摘Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the high energy costs borne by consumers.The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data,including information on client consumption,which may be used to identify electricity theft using machine learning and deep learning techniques.Moreover,there also exist different solutions such as hardware-based solutions to detect electricity theft that may require human resources and expensive hardware.Computer-based solutions are presented in the literature to identify electricity theft but due to the dimensionality curse,class imbalance issue and improper hyper-parameter tuning of such models lead to poor performance.In this research,a hybrid deep learning model abbreviated as RoGRUT is proposed to detect electricity theft as amalicious and non-malicious activity.The key steps of the RoGRUT are data preprocessing that covers the problem of class imbalance,feature extraction and final theft detection.Different advanced-level models like RoBERTa is used to address the curse of dimensionality issue,the near miss for class imbalance,and transfer learning for classification.The effectiveness of the RoGRUTis evaluated using the dataset fromactual smartmeters.A significant number of simulations demonstrate that,when compared to its competitors,the RoGRUT achieves the best classification results.The performance evaluation of the proposed model revealed exemplary results across variousmetrics.The accuracy achieved was 88%,with precision at an impressive 86%and recall reaching 84%.The F1-Score,a measure of overall performance,stood at 85%.Furthermore,themodel exhibited a noteworthyMatthew correlation coefficient of 78%and excelled with an area under the curve of 91%.
基金supported in part by the Research Fund of Guangxi Key Lab of Multi-Source Information Mining&Security(MIMS21-M-02).
文摘False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal selfattention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness.
基金The financial support from the Program for Science and Technology of Henan Province of China(Grant No.242102210148)Henan Center for Outstanding Overseas Scientists(Grant No.GZS2022011)Songshan Laboratory Pre-Research Project(Grant No.YYJC032022022).
文摘Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.
基金funded by National Key Research and Development Program of China (2021YFB2601400)。
文摘To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article combines wind turbine monitoring data with numerical weather prediction(NWP)data to create a suitable wind power prediction framework for distributed grids.First,high-precision NWP of the turbine range is achieved using weather research and forecasting models(WRF),and Kriging interpolation locates predicted meteorological data at the turbine site.Then,a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion curve,and historical power is reconstructed using variational mode decomposition(VMD)filtering to form input variables in chronological order.Finally,input variables of a single turbine enter the temporal convolutional network(TCN)to complete initial feature extraction,and then integrate the outputs of all TCN layers using Long Short Term Memory Networks(LSTM)to obtain power prediction sequences for all turbine positions.The proposed method was tested on a wind farm connected to a distributed power grid,and the results showed it to be superior to existing typical methods.
基金supported by the State Grid Henan Economic Research Institute Science and Technology Project“Calculation and Demonstration of Distributed Photovoltaic Open Capacity Based on Multi-Source Heterogeneous Data”(5217L0230013).
文摘After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.
基金supported by the National Natural Science Foundation of China(41922027,4214200052)by the Macao Foundation+1 种基金by the Pre-research Project on Civil Aerospace Technologies No.D020308/D020303 funded by China National Space Administrationby the Macao Science and Technology Development Fund,grant No.0001/2019/A1。
文摘Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellites,inverting the Earth’s three-dimensional conductivity distribution on a global scale becomes attainable.A key requirement in the global conductivity inversion is to have a forward solver with high-accuracy and efficiency.In this study,a finite volume method for global electromagnetic induction forward modeling is developed based on unstructured grids.Arbitrary polyhedral grids are supported in our algorithms to obtain high geometric adaptability.We employ a cell-centered collocated variable arrangement which allows convenient discretization for complex geometries and straightforward implementation of multigrid technique.To validate the method,we test our code with two synthetic models and compare our finite volume results with an analytical solution and a finite element numerical solution.Good agreements are observed between our solution and other results,indicating acceptable accuracy of the proposed method.
基金the French Ministry of Defense for its financial support, in the frame of an official subsidy agreement (convention de subvention)。
文摘In this work, blast disruption and mitigation using 3D grids/perforated plates were tested for underbelly and side protection of vehicles. Two vehicle simulants were used: a small-scale one for side vehicle protection assessment and a true-to-scale simulant for underbelly protection testing. The deformation of target plates was assessed. These were either unprotected or protected by three different types of disruptors. The first disruptor was made of a sandwich structure of two perforated plates filled with a thin aluminum structure allowing the air to pass through. The two other disruptors were made of pieces of cast metallic foam. Two different kinds of foams were used: one with large cells and the second one with small cells. Beforehand, the mitigation efficiency of the disruptors was evaluated using an explosivedriven shock tube(EDST). The experiments showed that blast disruption/mitigation by 3D grid/perforated plate structures was not suitable for vehicle side protection. However, 3D grids/perforated structures proved to be relatively effective for underbelly protection compared to an equivalent mass of steel.
文摘The need for a flexible,dynamic,and decentralized energy market has rapidly grown in recent years.As a matter of fact,Industry 4.0 and Smart Grids are pursuing a path of automation of operations to insure all the steps among consumers and producers are getting closer.This leads towards solutions that exploit the paradigm of public blockchain,which represents the best platform to design flat and liquid markets for which providing trust and accountability to mutual interactions becomes crucial.On the other hand,one of the risks arising in this situation is that personal information is exposed to the network,with intolerable threats to privacy.In this paper,we propose a solution for energy trading,based on the blockchain Ethereum and Smart Contracts.The solution aims to be a concrete proposal to satisfy the needs of energy trading in smart grids,including the important feature that no information about the identity of the peers of the network is disclosed in advance.
基金supported by the National Natural Science Foundation of China with Grants 61771289 and 61832012the Natural Science Foundation of Shandong Province with Grants ZR2021QF050 and ZR2021MF075+3 种基金Shandong Natural Science Foundation Major Basic Research with Grant ZR2019ZD10Shandong Key Research and Development Program with Grant 2019GGX1050Shandong Major Agricultural Application Technology Innovation Project with Grant SD2019NJ007National Natural Science Foundation of Shandong Province Grants ZR2022MF304.
文摘As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays.
文摘Smart cities depend highly on an intelligent electrical networks to provide a reliable,safe,and clean power supplies.A smart grid achieves such aforementioned power supply by ensuring resilient energy delivery,which presents opportunities to improve the cost-effectiveness of power supply and minimize environmental impacts.A systematic evaluation of the comprehensive benefits brought by smart grid to smart cities can provide necessary theoretical fundamentals for urban planning and construction towards a sustainable energy future.However,most of the present methods of assessing smart cities do not fully take into account the benefits expected from the smart grid.To comprehensively evaluate the development levels of smart cities while revealing the supporting roles of smart grids,this article proposes a model of smart city development needs from the perspective of residents’needs based on Maslow’s Hierarchy of Needs theory,which serves the primary purpose of building a smart city.By classifying and reintegrating the needs,an evaluation index system of smart grids supporting smart cities was further constructed.A case analysis concluded that smart grids,as an essential foundation and objective requirement for smart cities,are important in promoting scientific urban management,intelligent infrastructure,refined public services,efficient energy utilization,and industrial development and modernization.Further optimization suggestions were given to the city analyzed in the case include strengthening urban management and infrastructure constructions,such as electric vehicle charging facilities and wireless coverage.
文摘The invention of Phasor Measurement Units(PMUs)produce synchronized phasor measurements with high resolution real time monitoring and control of power system in smart grids that make possible.PMUs are used in transmitting data to Phasor Data Concentrators(PDC)placed in control centers for monitoring purpose.A primary concern of system operators in control centers is maintaining safe and efficient operation of the power grid.This can be achieved by continuous monitoring of the PMU data that contains both normal and abnormal data.The normal data indicates the normal behavior of the grid whereas the abnormal data indicates fault or abnormal conditions in power grid.As a result,detecting anomalies/abnormal conditions in the fast flowing PMU data that reflects the status of the power system is critical.A novel methodology for detecting and categorizing abnormalities in streaming PMU data is presented in this paper.The proposed method consists of three modules namely,offline Gaussian Mixture Model(GMM),online GMM for identifying anomalies and clustering ensemble model for classifying the anomalies.The significant features of the proposed method are detecting anomalies while taking into account of multivariate nature of the PMU dataset,adapting to concept drift in the flowing PMU data without retraining the existing model unnecessarily and classifying the anomalies.The proposed model is implemented in Python and the testing results prove that the proposed model is well suited for detection and classification of anomalies on the fly.
基金supported by the Science and Technology Project of State Grid Corporation of China under Grant 520201210025。
文摘The hybrid dc circuit breaker(HCB)has the advantages of fast action speed and low operating loss,which is an idealmethod for fault isolation ofmulti-terminal dc grids.Formulti-terminal dc grids that transmit power through overhead lines,HCBs are required to have reclosing capability due to the high fault probability and the fact that most of the faults are temporary faults.To avoid the secondary fault strike and equipment damage that may be caused by the reclosing of the HCB when the permanent fault occurs,an adaptive reclosing scheme based on traveling wave injection is proposed in this paper.The scheme injects traveling wave signal into the fault dc line through the additionally configured auxiliary discharge branch in the HCB,and then uses the reflection characteristic of the traveling wave signal on the dc line to identify temporary and permanent faults,to be able to realize fast reclosing when the temporary fault occurs and reliably avoid reclosing after the permanent fault occurs.The test results in the simulation model of the four-terminal dc grid show that the proposed adaptive reclosing scheme can quickly and reliably identify temporary and permanent faults,greatly shorten the power outage time of temporary faults.In addition,it has the advantages of easiness to implement,high reliability,robustness to high-resistance fault and no dead zone,etc.
基金sponsored by National Natural Science Foundation(40474041)National Symposium of 863(2006AA06Z206)+1 种基金National Symposium of 973(2007CB209605)CNPC Geophysical Key Laboratory of the China University of Petroleum (East China) Research Department
文摘Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurate and not affected by strong subsurface structure complexity and horizontal velocity variations. The difference method based on triangular grids maintains the simplicity of the difference method and the precision of the finite element method. It can be used directly for forward modeling on models with complex top surfaces and migration without statics preprocessing. We apply a finite difference method based on triangular grids for post-stack reverse-time migration for the first time. Tests on model data verify that the combination of the two methods can achieve near-perfect results in application.
文摘The aim is to study the set of subsets of grids of the Waterloo language from the point of view of abstract algebra and graph theory. The study was conducted using the library for working with transition graphs of nondeterministic finite automata NFALib implemented by one of the authors in C#, as well as statistical methods for analyzing algorithms. The results are regularities obtained when considering semilattices on a set of subsets of grids of the Waterloo language. It follows from the results obtained that the minimum covering automaton equivalent to the Waterloo automaton can be obtained by adding one additional to the minimum covering set of grids. .
文摘For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.
基金Project(2017ZX05013002-002)supported by Major National Science and Technology Projects of ChinaProject(RIPED-2016-JS-276)supported by Petro-China Research Institute of Petroleum Exploration and Development
文摘Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that exist among different software.Here,a series of algorithms is developed and integrated in the Petrel2ANSYS to carry out two-way conversions between the 3D attribute models that employ corner-point grids used in Petrel and the 3D finite-element grids used in ANSYS.Furthermore,a modified method of simulating stress characteristics and analyzing stress fields using the finite-element method and multiple finely resolved 3D models is proposed.Compared to the traditional finite-element simulation-based approach,which involves describing the heterogeneous within a rock body or sedimentary facies in detail and simulating the stress distribution,the single grid cell-based approach focuses on a greater degree on combining the rock mechanics described by 3D corner-point grid models with the finely resolved material characteristics of 3D finite-element models.Different models that use structured and unstructured grids are verified in Petrel2ANSYS to assess the feasibility.In addition,with minor modifications,platforms based on the present algorithms can be extended to other models to convert corner-point grids to the finite-element grids constructed by other software.
基金The National Natural Science Foundation of China(No60673054,90412012)
文摘To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated QoS-aware job dispatching policy is proposed, which correlates priorities of incoming jobs used for job selecting at the local scheduler of the grid node with the job dispatching policies at the global scheduler for computational grids. The stochastic high-level Petri net (SHLPN) model of a two-level hierarchy computational grid architecture is presented, and a model refinement is made to reduce the complexity of the model solution. A performance analysis technique based on the SHLPN is proposed to investigate the QoS-aware job scheduling policy. Numerical results show that the QoS-aware job dispatching policy outperforms the QoS-unaware job dispatching policy in balancing the high-priority jobs, and thus enables priority-based QoS.
文摘It has been evident that the theory and methods of dynamic derivatives are playing an increasingly important role in hybrid modeling and computations. Being constructed on various kinds of hybrid grids, that is, time scales, dynamic derivatives offer superior accuracy and flexibility in approximating mathematically important natural processes with hard-to-predict singularities, such as the epidemic growth with unpredictable jump sizes and option market changes with high uncertainties, as compared with conventional derivatives. In this article, we shall review the novel new concepts, explore delicate relations between the most frequently used second-order dynamic derivatives and conventional derivatives. We shall investigate necessary conditions for guaranteeing the consistency between the two derivatives. We will show that such a consistency may never exist in general. This implies that the dynamic derivatives provide entirely different new tools for sensitive modeling and approximations on hybrid grids. Rigorous error analysis will be given via asymptotic expansions for further modeling and computational applications. Numerical experiments will also be given.