In fluid catalytic cracking(FCC) unit, it is greatly important to control the coke yield, since the increase of coke yield not only leads to the reduction of total liquid yield, but also affects the heat balance and o...In fluid catalytic cracking(FCC) unit, it is greatly important to control the coke yield, since the increase of coke yield not only leads to the reduction of total liquid yield, but also affects the heat balance and operation of FCC unit. Consequently, it is significant to predict the coke yield accurately. The coke formation and burning reactions are affected by many parameters which influence each other, so it is difficult to establish a prediction model using traditional models. This paper combines the industrial production data and establishes a generalized regression neural network(GRNN) model and a back propagation(BP) neural network model to predict the coke yield respectively. The comparison and analysis results show that the accuracy and stability of the BP neural network prediction results are better than that of the GRNN. Then, the particle swarm optimization to optimize BP neural network(PSO-BP) and genetic algorithm to optimize the BP neural network(GA-BP) were further used to improve the prediction precision. The comparison of these models shows that they can improve the prediction precision. However, considering the accuracy and stability of the prediction results, the GA-BP model is better than PSO-BP model.展开更多
Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input...Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained.展开更多
The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmosph...The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmospheric angular momentum(AAM) function is tightly correlated with the LOD changes, it was introduced into the GRNN prediction model to further improve the accuracy of prediction. Experiments with the observational data of LOD changes show that the prediction accuracy of the GRNN model is 6.1% higher than that of BP network, and after introducing AAM function, the improvement of prediction accuracy further increases to 14.7%. The results show that the GRNN with AAM function is an effective prediction method for LOD changes.展开更多
文摘In fluid catalytic cracking(FCC) unit, it is greatly important to control the coke yield, since the increase of coke yield not only leads to the reduction of total liquid yield, but also affects the heat balance and operation of FCC unit. Consequently, it is significant to predict the coke yield accurately. The coke formation and burning reactions are affected by many parameters which influence each other, so it is difficult to establish a prediction model using traditional models. This paper combines the industrial production data and establishes a generalized regression neural network(GRNN) model and a back propagation(BP) neural network model to predict the coke yield respectively. The comparison and analysis results show that the accuracy and stability of the BP neural network prediction results are better than that of the GRNN. Then, the particle swarm optimization to optimize BP neural network(PSO-BP) and genetic algorithm to optimize the BP neural network(GA-BP) were further used to improve the prediction precision. The comparison of these models shows that they can improve the prediction precision. However, considering the accuracy and stability of the prediction results, the GA-BP model is better than PSO-BP model.
基金Project(07JA790092) supported by the Research Grants from Humanities and Social Science Program of Ministry of Education of ChinaProject(10MR44) supported by the Fundamental Research Funds for the Central Universities in China
文摘Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained.
基金Projects(U1231105,10878026)supported by the National Natural Science Foundation of China
文摘The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmospheric angular momentum(AAM) function is tightly correlated with the LOD changes, it was introduced into the GRNN prediction model to further improve the accuracy of prediction. Experiments with the observational data of LOD changes show that the prediction accuracy of the GRNN model is 6.1% higher than that of BP network, and after introducing AAM function, the improvement of prediction accuracy further increases to 14.7%. The results show that the GRNN with AAM function is an effective prediction method for LOD changes.