期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
基于GA-GRNN的AWJ强化3D打印AlSi10Mg表面性能实验研究
1
作者 张苗苗 侯荣国 +3 位作者 吕哲 王龙庆 石广行 王中庆 《现代制造工程》 CSCD 北大核心 2024年第7期35-41,共7页
为提高磨料水射流(Abrasive Water Jet,AWJ)强化工艺对3D打印AlSi10Mg表面性能的强化效果预测的准确性及高效性,首先开展磨料水射流强化AlSi10Mg表面强化实验;然后分别以表面硬度和表面残余应力作为目标,基于遗传算法-广义回归神经网络(... 为提高磨料水射流(Abrasive Water Jet,AWJ)强化工艺对3D打印AlSi10Mg表面性能的强化效果预测的准确性及高效性,首先开展磨料水射流强化AlSi10Mg表面强化实验;然后分别以表面硬度和表面残余应力作为目标,基于遗传算法-广义回归神经网络(Genetic Algorithm-Generalized Ragression Neural Network,GA-GRNN)对实验数据样本进行训练,建立3D打印AlSi10Mg表面性能预测模型;最后,利用遗传算法对建立的神经网络预测模型中的AWJ强化主要参数进行优化。研究结果表明,经过磨料水射流强化后的AlSi10Mg表面硬度与表面残余应力均得到有效提高;建立的GA-GRNN预测模型与校验值误差在2.3%以内,具有较高的准确性;经遗传算法优化后,得到表面硬度最佳参数组合:射流压力为33 MPa,磨料粒径为0.15 mm,靶距为12.4 mm,此时表面硬度为159.25HV;表面残余应力最佳参数组合:射流压力为40 MPa,磨料粒径为0.13 mm,靶距为15 mm,此时表面残余应力为-137.4 MPa。为后续磨料水射流强化零件表面的参数选择提供数据支撑。 展开更多
关键词 磨料水射流 3D打印的AlSi10Mg 表面强化 GA-grnn神经网络 遗传算法
下载PDF
基于GRNN的短期光伏功率预测
2
作者 赵金金 王晓娟 《微处理机》 2024年第2期38-40,共3页
为提高光伏电站运营当中对输出功率预测的准确度,进一步提升光伏电站的智能化程度,降低光伏电站的运营成本,建立了一种基于GRNN算法的输出功率预测模型。模型利用GRNN神经网络的非线性映射能力预测短期光伏输出功率,可在同等条件下,相... 为提高光伏电站运营当中对输出功率预测的准确度,进一步提升光伏电站的智能化程度,降低光伏电站的运营成本,建立了一种基于GRNN算法的输出功率预测模型。模型利用GRNN神经网络的非线性映射能力预测短期光伏输出功率,可在同等条件下,相较BP神经网络预测算法得到更接近于实际的输出功率值。本模型发挥出GRNN算法结构简单的特性,在实验中实现了较高的预测准确度,同时有助于提高电网运行的稳定性。 展开更多
关键词 光伏电站 输出功率 BP神经网络 grnn算法
下载PDF
基于SSA-GRNN的铜CMP抛光液抛光速率预测
3
作者 栾晓东 张拓 穆成银 《江苏海洋大学学报(自然科学版)》 CAS 2024年第3期86-92,共7页
铜化学机械抛光(CMP)是集成电路制造的关键步骤之一,其中铜抛光速率是衡量抛光液性能的关键指标。在CMP过程中,由于铜抛光液中各组分与铜之间的化学反应复杂,需要大量的数据实验来实现可调的抛光速率。为提高铜CMP抛光速率预测的准确性... 铜化学机械抛光(CMP)是集成电路制造的关键步骤之一,其中铜抛光速率是衡量抛光液性能的关键指标。在CMP过程中,由于铜抛光液中各组分与铜之间的化学反应复杂,需要大量的数据实验来实现可调的抛光速率。为提高铜CMP抛光速率预测的准确性,利用麻雀搜索算法对广义回归神经网络的平滑因子进行优化,提出了一种基于麻雀搜索算法的广义回归神经网络(SSA-GRNN)铜CMP抛光液抛光速率预测模型。首先,在MATLAB中建立SSA-GRNN网络模型,然后输入抛光液各组分数据,预测在不同组分下抛光液的抛光速率,最后将SSA-GRNN模型的预测结果与BP神经网络模型(BP-NCABC)的预测结果对比。结果表明,SSA-GRNN模型在训练集上的平均绝对百分比误差(MAPE)比BP-NCABC模型降低4.82百分点,在测试集上的MAPE比BP-NCABC模型降低1.78百分点;SSA-GRNN模型在训练集上的最优预测精度比BP-NCABC模型提高0.09百分点,在测试集上的最优预测精度比BP-NCABC模型提高0.32百分点。上述研究结果表明,在CMP抛光速率的预测上SSA-GRNN模型比BP-NCABC模型的准确性更高,这为指导CMP实验、提升实验效率、降低研发成本和优化抛光液组分提供了一种可选的模型。 展开更多
关键词 化学机械抛光 抛光液 广义回归神经网络 麻雀搜索算法
下载PDF
基于改进GWO-GRNN的管道焊缝三维重构测量
4
作者 高博轩 赵弘 苗兴园 《机床与液压》 北大核心 2024年第1期1-10,共10页
为提高双目相机不同位姿下焊缝的三维重构测量精度,提出一种基于立体视觉图像误差补偿的管道焊缝三维重构测量方法。采用改进灰狼算法(IGWO)优化广义回归神经网络(GRNN)补偿焊缝三维重构图像点的坐标误差。采用混沌映射、非线性收敛因... 为提高双目相机不同位姿下焊缝的三维重构测量精度,提出一种基于立体视觉图像误差补偿的管道焊缝三维重构测量方法。采用改进灰狼算法(IGWO)优化广义回归神经网络(GRNN)补偿焊缝三维重构图像点的坐标误差。采用混沌映射、非线性收敛因子和最优记忆保存思想对GWO算法进行改进,通过8个标准测试函数进行仿真验证;利用优化后的GRNN模型对图像点坐标误差进行预测和补偿,计算三维坐标重构出焊缝点云,三维测量焊缝的焊宽、余高和长度。试验结果表明:该模型在双目相机不同的位姿状态下都能较准确地实现焊缝的三维重构,焊缝的三维测量相对误差在0.9%以内。 展开更多
关键词 立体视觉 图像误差补偿 改进灰狼优化 广义回归神经网络 焊缝三维重构测量
下载PDF
一种基于智能算法的GNSS高程拟合方法
5
作者 王朝 王志文 《港口航道与近海工程》 2024年第3期86-90,共5页
广义回归神经网络(GRNN)是一种新型的前馈神经网络模型,具有训练次数少、耗时短、非线性参数的预报能力较强等优点。但GRNN唯一的调节参数SPREAD不能自动获取限制其进一步的应用。针对该缺陷,本文采用果蝇优化算法(FOA)与GRNN相结合构建... 广义回归神经网络(GRNN)是一种新型的前馈神经网络模型,具有训练次数少、耗时短、非线性参数的预报能力较强等优点。但GRNN唯一的调节参数SPREAD不能自动获取限制其进一步的应用。针对该缺陷,本文采用果蝇优化算法(FOA)与GRNN相结合构建FOAGRNN模型对GRNN进行优化,自动获取调节参数的值。为了检验FOAGRNN模型的GNSS高程拟合精度,进行了实验分析。实验结果证明了FOAGRNN模型的GNSS高程拟合精度可达6mm。为进一步检验FOAGRNN模型的优越性,采用与平面拟合模型、二次曲面拟合模型进行对比。实验结果表示FOAGRNN模型的拟合精度要优于平面拟合模型和二次曲面拟合模型,证明了FOAGRNN模型在数据样本较少的情况下,其GNSS高程拟合精度仍然可以达到较高精度。 展开更多
关键词 果蝇优化算法(FOA) 广义回归神经网络(grnn) GNSS高程拟合
下载PDF
基于GRNN网络和遗传算法的旋翼动平衡调整 被引量:10
6
作者 刘红梅 王少萍 欧阳平超 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第5期507-511,共5页
针对传统旋翼调整方法没有考虑调整参数与振动信号之间的非线性关系,提出一种结合广义回归神经网络GRNN(General Regression Neural Network)和遗传算法的旋翼调整方法,采用GRNN建立旋翼动平衡调整模型,以桨叶调整参数作为GRNN输入,以... 针对传统旋翼调整方法没有考虑调整参数与振动信号之间的非线性关系,提出一种结合广义回归神经网络GRNN(General Regression Neural Network)和遗传算法的旋翼调整方法,采用GRNN建立旋翼动平衡调整模型,以桨叶调整参数作为GRNN输入,以旋翼转轴3个方向的加速度测量值和机身3个方向加速度测量值作为网络输出,建立调整参数与直升机振动信号之间的模型.以直升机振动作为目标函数,采用改进的遗传算法对桨叶调整参数进行寻优,获得直升机振动最小时的桨叶的调整量.飞行实验表明,通过1到2次飞行调整,可使3个方向机身振动(旋翼的一阶振动)为最小,完成旋翼的动平衡调整. 展开更多
关键词 旋翼 动平衡 广义回归神经网络(grnn) 遗传算法 优化
下载PDF
基于GRNN网络的CO_2气体保护焊工艺碳排放建模与参数优化 被引量:13
7
作者 罗毅 曹华军 +1 位作者 李洪丞 程海琴 《中国机械工程》 EI CAS CSCD 北大核心 2013年第17期2398-2403,共6页
以CO2气体保护焊为研究对象,通过对其碳排放特性进行分析,综合考虑物料、能源及工艺三个碳排放源,建立了焊接工艺碳排放特性函数;以质量和成本为约束,利用广义回归神经网络拟合各输入参数与质量、成本和碳排放的关系,建立了碳排放综合... 以CO2气体保护焊为研究对象,通过对其碳排放特性进行分析,综合考虑物料、能源及工艺三个碳排放源,建立了焊接工艺碳排放特性函数;以质量和成本为约束,利用广义回归神经网络拟合各输入参数与质量、成本和碳排放的关系,建立了碳排放综合评价优化模型,并采用遗传算法进行求解。将该模型应用于装载机燃油箱焊接工艺参数的选择,应用结果表明,该模型能在保证油箱焊接质量和成本的前提下降低工艺过程碳排放。 展开更多
关键词 焊接碳排放 grnn网络 遗传算法 参数选择
下载PDF
煤矿瓦斯涌出量动态预测的PCA-MFOA-GRNN模型及应用 被引量:6
8
作者 皮子坤 贾宝山 +2 位作者 贾廷贵 李锐 李宗翔 《传感技术学报》 CAS CSCD 北大核心 2015年第11期1676-1681,共6页
针对煤矿瓦斯涌出受许多因素的影响,为了克服瓦斯涌出中存在的复杂的非线性关系,从而实现稳定、可靠、精确的对煤矿综采工作面瓦斯涌出量进行动态预测,提出了主成分分析法(PCA)结合改进的果蝇算法(MFOA)优化GRNN的绝对瓦斯涌出量的预测... 针对煤矿瓦斯涌出受许多因素的影响,为了克服瓦斯涌出中存在的复杂的非线性关系,从而实现稳定、可靠、精确的对煤矿综采工作面瓦斯涌出量进行动态预测,提出了主成分分析法(PCA)结合改进的果蝇算法(MFOA)优化GRNN的绝对瓦斯涌出量的预测手段。运用PCA算法对原始输入数据降维;并且对果蝇算法中的Si函数增加一个跳脱参数B,避免局部最优因子对预测模型的干扰;将MFOA算法对GRNN的平滑因子σ进行优化;将PCA结果作为模型的输入,建立了PCA-MFOAGRNN算法的回采工作面瓦斯涌出量动态预测模型,结合实际矿井瓦斯涌出量监测的相关数据检验该模型,并将该模型的预测结果与未修正的FOA-GRNN算法、CIPSO-ENN算法、BP神经网络预测、Elman网络预测结果进行对比,结果表明:该预测模型对GRNN的参数优化后得到的预测模型较其他预测模型有更强的泛化能力和更高的预测精度。 展开更多
关键词 动态预测 MFOA(改进的果蝇算法) grnn(广义回归神经网络) PCA(主成分分析) 瓦斯涌出量
下载PDF
基于集合经验模态分解和ARIMA-GRNN的负荷预测方法 被引量:7
9
作者 王洪亮 陈新源 赵雨梦 《电子科技》 2021年第12期42-48,共7页
针对传统负荷预测方法难以兼顾电力负荷内在线性特征量与非线性特征量的问题,文中提出一种基于EEMD和ARIMA-GRNN的混合负荷预测模型方法。该方法采用EEMD法,将负荷数据分解成不存在模态混叠的IMF分量和余项。运用ARIMA模型算法对每个IM... 针对传统负荷预测方法难以兼顾电力负荷内在线性特征量与非线性特征量的问题,文中提出一种基于EEMD和ARIMA-GRNN的混合负荷预测模型方法。该方法采用EEMD法,将负荷数据分解成不存在模态混叠的IMF分量和余项。运用ARIMA模型算法对每个IMF分量进行线性预测,得到时间序列预测分量,并将其与原始数据相减得到其中的非线性分量。通过GRNN神经网络算法对非线性分量进行预测得到非线性分量的预测值,并将求得的线性预测分量和非线性预测分量相加得到最终的预测值。仿真实验表明,文中提出的基于EEMD和ARIMA-GRNN的混合预测模型在预测精度和性能上均优于采用单一算法的负荷预测方法。 展开更多
关键词 负荷预测 集合经验模态分解 ARIMA-grnn 混合模型 IMF 神经网络算法 非线性 时间序列
下载PDF
修正型果蝇算法优化GRNN网络的尾矿库安全预测 被引量:15
10
作者 王英博 聂娜娜 +1 位作者 王铭泽 李仲学 《计算机工程》 CAS CSCD 北大核心 2015年第4期267-272,共6页
针对尾矿库事故具有随机波动性和非线性的特点,提出采用修正型果蝇优化算法优化广义回归神经网络的尾矿库安全评价模型(MFOA-GRNN)。该方法利用修正型果蝇优化算法的全局寻优特性对广义回归神经网络进行参数优化,同时应用去相关性分析... 针对尾矿库事故具有随机波动性和非线性的特点,提出采用修正型果蝇优化算法优化广义回归神经网络的尾矿库安全评价模型(MFOA-GRNN)。该方法利用修正型果蝇优化算法的全局寻优特性对广义回归神经网络进行参数优化,同时应用去相关性分析选取尾矿库安全评价指标,实现尾矿库的安全预测。以辽宁本溪南芬尾矿库为研究实例进行拟合预测,实验结果表明,将MFOA方法与GRNN网络有机结合,有利于平滑因子σ的选择,相较于FOA-GRNN模型70%的预测准确度,采用修正型果蝇算法优化的GRNN模型预测准确度高达100%,预测精度更高,适用性更强。 展开更多
关键词 尾矿库 果蝇优化算法 广义回归神经网络 平滑因子 参数优化 安全预测
下载PDF
基于RFOA优化GRNN的水电机组振动预测 被引量:8
11
作者 王继选 胡润志 +3 位作者 管一 张少恺 曹庆皎 王利英 《振动与冲击》 EI CSCD 北大核心 2021年第21期120-126,共7页
针对水电机组振动的非平稳、非线性特点,提出利用改进果蝇算法(RFOA)优化广义回归神经网络模型(RFOA-GRNN)。通过改进果蝇算法的搜索步长和气味浓度判定公式,使该算法的局部寻优能力增强,收敛速度提高。通过8种常用的基准函数对FOA算法... 针对水电机组振动的非平稳、非线性特点,提出利用改进果蝇算法(RFOA)优化广义回归神经网络模型(RFOA-GRNN)。通过改进果蝇算法的搜索步长和气味浓度判定公式,使该算法的局部寻优能力增强,收敛速度提高。通过8种常用的基准函数对FOA算法、DSFOA算法、RFOA算法进行仿真测试,测试结果验证了RFOA算法的有效性。利用三种优化算法优化GRNN的平滑因子,将优化后平滑因子代入GRNN模型对水电机组振动进行预测。结果表明,与FOA-GRNN和DSFOA-GRNN两种预测模型相比,RFOA-GRNN预测模型的预测结果最大相对误差分别降低了99.96%和99.28%。可以得到RFOA-GRNN模型的预测精度和稳定性方面均优于其他两种模型,验证了此模型的有效性。将其应用于水电机组状态趋势预测研究中,可为维护人员提前发现水电机组故障并及时检修进而保证水电机组安全稳定的运行提供保障。 展开更多
关键词 水电机组 改进果蝇优化算法(RFOA) 广义回归神经网络(grnn) 平滑因子 振动预测
下载PDF
基于Akima-LMD和GRNN的短期负荷预测 被引量:20
12
作者 邹红波 伏春林 喻圣 《电工电能新技术》 CSCD 北大核心 2018年第1期51-56,共6页
传统局域均值分解(LMD)对极值点采用了滑动平均值处理得到局域均值函数和局域包络函数,易造成分解的分量过平滑而影响精度。为了减小过平滑影响,采用Akima插值法代替滑动平均值法处理局域函数来改进LMD算法,针对电力系统负荷序列的非平... 传统局域均值分解(LMD)对极值点采用了滑动平均值处理得到局域均值函数和局域包络函数,易造成分解的分量过平滑而影响精度。为了减小过平滑影响,采用Akima插值法代替滑动平均值法处理局域函数来改进LMD算法,针对电力系统负荷序列的非平稳性和非线性,利用改进LMD算法进行序列分解得到若干分量,再利用广义回归神经网络(GRNN)预测各个分量的趋势,叠加各分量趋势得到负荷序列总趋势。GRNN神经网络较传统神经网络训练速度快、精度高,能很好地预测非线性序列。算例分析表明,改进LMD结合GRNN的方法较经验模态分解(EMD)结合GRNN的方法在短期电力负荷预测中有更高的预测精度。 展开更多
关键词 Akima插值 LMD算法 grnn神经网络 短期负荷预测
下载PDF
基于RS-GWO-GRNN的充填管道失效风险研究 被引量:9
13
作者 骆正山 王文辉 张新生 《有色金属工程》 CAS 北大核心 2019年第6期76-83,共8页
为克服充填管道失效风险评判指标间的复杂性,传统方法预测精度低及适用性差等缺陷,提出基于粗糙集(RS)和灰狼优化(GWO)算法融合广义回归神经网络(GRNN)的充填管道失效风险评价模型。选取10项风险评价指标,通过属性约简提取影响充填管道... 为克服充填管道失效风险评判指标间的复杂性,传统方法预测精度低及适用性差等缺陷,提出基于粗糙集(RS)和灰狼优化(GWO)算法融合广义回归神经网络(GRNN)的充填管道失效风险评价模型。选取10项风险评价指标,通过属性约简提取影响充填管道失效的主要风险因素,运用GWO优化GRNN的参数,构建预测模型,以国内某具体矿山充填系统为例进行实证研究,结果表明:与其它预测模型相比,RS-GWO-GRNN模型的预测精度更高,泛化能力更强,为充填管道失效风险研究提供了新思路,具有较好的借鉴意义。 展开更多
关键词 粗糙集(RS)理论 灰狼优化(GWO)算法 广义回归神经网络(grnn) 充填管道 失效风险
下载PDF
基于因果时序网络的FOA-GRNN电网故障诊断方法 被引量:6
14
作者 薛毓强 李宗辉 《电力系统及其自动化学报》 CSCD 北大核心 2014年第11期72-77,共6页
针对电网故障诊断过程常受到警报信息畸变以及保护设备误动或拒动等不确定因素的影响而导致误诊断的问题,提出了基于时序网络的果蝇优化算法-广义回归神经网络电网故障诊断方法。利用系统保护与设备之间存在的时序逻辑关系,对获得的电... 针对电网故障诊断过程常受到警报信息畸变以及保护设备误动或拒动等不确定因素的影响而导致误诊断的问题,提出了基于时序网络的果蝇优化算法-广义回归神经网络电网故障诊断方法。利用系统保护与设备之间存在的时序逻辑关系,对获得的电网故障警报信息甄别后再进行故障诊断。算例分析及测试结果说明,所提方法能够准确地实现电网的故障诊断,并适应电网拓扑结构的变化。 展开更多
关键词 电力系统 因果网络 神经网络 果蝇优化算法 广义回归神经网络
下载PDF
联合鲸鱼算法和遗传算法优化GRNN预测斜拉索覆冰厚度 被引量:4
15
作者 汪峰 毛锦伟 刘章军 《土木与环境工程学报(中英文)》 CSCD 北大核心 2022年第3期10-19,共10页
为了预测冬季易结冰区斜拉索覆冰的增长,运用灰色关联分析方法分析斜拉索倾角、温度、湿度、风速、降雨量及气压对斜拉索覆冰厚度的关联影响,明确各影响因素的相关性大小,剔除弱相关性因素;联合遗传算法(GA)和鲸鱼算法(WOA)选择最优光... 为了预测冬季易结冰区斜拉索覆冰的增长,运用灰色关联分析方法分析斜拉索倾角、温度、湿度、风速、降雨量及气压对斜拉索覆冰厚度的关联影响,明确各影响因素的相关性大小,剔除弱相关性因素;联合遗传算法(GA)和鲸鱼算法(WOA)选择最优光滑因子,提出一种WOA-GA算法优化广义回归神经网络(GRNN)的斜拉索覆冰厚度预测方法。其特点是:以输出值与实际值均方差作为适应度函数,计算每个粒子的适应度值;将GA算法的交叉和变异算子引入WOA算法,同时借助权重更新策略,提升全局寻优的能力,避免WOA算法陷入局部最优解;最后,经过迭代寻优,输出最小适应度值对应的光滑因子,构建GRNN预测模型。结果表明:环境温度相关性最高,其次是倾角、降水量、风速、相对湿度,气压关联度最小,呈弱相关性;相比于传统的GRNN、WOA-GRNN、PSO-GA-GRNN模型,联合鲸鱼算法和遗传算法优化的GRNN覆冰预测模型精度较高,其平均绝对误差百分比仅为3.58%,均方根误差为0.58 mm;采用敏感性分析法评价影响因素对模型精度的影响,发现温度对模型影响程度最大,其次是拉索倾角。 展开更多
关键词 斜拉索 覆冰预测 鲸鱼算法 遗传算法 广义回归神经网络
下载PDF
基于KPCA-BAS-GRNN的埋地管道外腐蚀速率预测 被引量:21
16
作者 骆正山 姚梦月 +1 位作者 骆济豪 王小完 《表面技术》 EI CAS CSCD 北大核心 2018年第11期173-180,共8页
目的提高埋地管道外腐蚀速率的预测精度。方法建立基于核主成分分析法(KPCA)和天牛须搜索(BAS)算法优化的广义回归神经网络(GRNN)腐蚀速率预测模型,通过KPCA对原始数据进行预处理,提取影响管道外腐蚀的主要因素,应用GRNN建立埋地管道外... 目的提高埋地管道外腐蚀速率的预测精度。方法建立基于核主成分分析法(KPCA)和天牛须搜索(BAS)算法优化的广义回归神经网络(GRNN)腐蚀速率预测模型,通过KPCA对原始数据进行预处理,提取影响管道外腐蚀的主要因素,应用GRNN建立埋地管道外腐蚀速率预测的数学模型,并采用BAS算法对模型进行优化,减小了人为设置参数的影响。以川气东送埋地管段为例,分析选取出12种关键影响因素,建立了埋地管道外腐蚀指标体系,借助MATLAB-R2014a编写程序进行仿真,并与实际值进行对比。结果模型的预测结果与实际值基本一致,KPCA可有效降低指标体系的维度,提取出包含原始信息97.9%的3个主因素—土壤电阻率、氧化还原电位、氯离子含量,简化了运算过程。采用的BAS-GRNN模型将预测精度提高到7.83%以内,平均相对误差5.21%,决定系数取值0.93。与其他模型相比,该模型性能较好,预测精度更高。结论采用KPCA提取的主要影响因素符合工程实际,建立的BAS-GRNN模型预测精度高,有较好的适应性,为埋地管道外腐蚀速率预测提供了新思路,对管道的维护更新工作提供了参考依据。 展开更多
关键词 埋地管道 外腐蚀速率预测模型 核主成分分析法(KPCA) 天牛须搜索算法(BAS) 广义回归神经网络(grnn)
下载PDF
基于RW-SSA-GRNN的短期电力负荷预测 被引量:3
17
作者 闫秀英 樊晟志 《分布式能源》 2022年第6期37-43,共7页
智能电网技术的迅速发展,对短期电力负荷预测的速度、精度和稳定性都提出了更高的要求。针对智能用电环境下负荷随机性强、数据量较少情况下短期电力负荷预测精度差、计算时间长等问题,提出一种基于随机游走(random walk, RW)、改进麻... 智能电网技术的迅速发展,对短期电力负荷预测的速度、精度和稳定性都提出了更高的要求。针对智能用电环境下负荷随机性强、数据量较少情况下短期电力负荷预测精度差、计算时间长等问题,提出一种基于随机游走(random walk, RW)、改进麻雀搜索算法(sparrow search algorithm, SSA)优化广义回归神经网络(general regression neural network, GRNN)的组合预测方法。模型采用多输入单输出,输入为负荷数据和气象信息等,输出为负荷预测值。通过引入随机游走对麻雀所处位置进行扰动,避免陷入局部最优的同时进一步提高其全局搜索能力,利用改进后的麻雀搜索算法优化广义回归神经网络的平滑因子,提升模型的自学能力、稳定性和精度。以陕西省西安市某支线的实际负荷数据进行预测验证,结果表明,改进后的算法拥有更好的收敛能力,模型预测精度更高。 展开更多
关键词 电力负荷 负荷预测 广义回归神经网络(grnn) 随机游走(RW) 麻雀搜索算法(SSA)
下载PDF
基于WPT和FOAGRNN的模拟电路故障诊断 被引量:4
18
作者 郭庆 张文斌 苏海涛 《计算机仿真》 北大核心 2020年第1期355-359,共5页
为提高对模拟电路故障模式的准确分类和减少网络模型的训练时间,提出基于小波包变换(WPT)和果蝇算法(FOA)优化广义回归神经网络(GRNN)的模拟电路故障诊断方法。首先采用小波包变换提取电路优质故障特征,以减少网络训练时间,然后建立GRN... 为提高对模拟电路故障模式的准确分类和减少网络模型的训练时间,提出基于小波包变换(WPT)和果蝇算法(FOA)优化广义回归神经网络(GRNN)的模拟电路故障诊断方法。首先采用小波包变换提取电路优质故障特征,以减少网络训练时间,然后建立GRNN网络模型,选择FOA算法优化GRNN网络参数,构建最优模型对电路故障特征进行训练测试,最后采用仿真测试其性能。实验结果表明,FOA算法有效提高诊断模型训练效率,相比于其它电路故障诊断模型,FOAGRNN模型具有更高的诊断率和优越性。 展开更多
关键词 果蝇优化算法 广义回归神经网络 小波包变换 故障诊断 模拟电路
下载PDF
PCA-MGA-GRNN矿井通风机故障识别方法 被引量:5
19
作者 李文华 杨子凝 王来贵 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2018年第2期401-407,共7页
为预防因矿井通风机故障而引起事故,基于生产安全及经济方面考虑,对矿井通风机故障类型进行准确、稳定、可靠的识别,提出将改进的遗传算法(MGA)与广义回归神经网络(GRNN)相耦合,从而实现对矿井通风机故障的能检测.通过研究通风机作业过... 为预防因矿井通风机故障而引起事故,基于生产安全及经济方面考虑,对矿井通风机故障类型进行准确、稳定、可靠的识别,提出将改进的遗传算法(MGA)与广义回归神经网络(GRNN)相耦合,从而实现对矿井通风机故障的能检测.通过研究通风机作业过程中振动信号与矿井通风机故障之间的关系,将其不同频率段能量值作为故障表征参数,并以相应的矿井通风机故障类型作为目标参数;对故障表征参数进行主元分析(PCA)计算后与目标参数作为GRNN的输入值与输出值加以训练;利用MGA优化GRNN的光滑因子参数,使其具有更好的网络性能,以此建立PCA-MGA-GRNN矿井通风机智能故障识别模型,结合实际的矿井通风机故障相关数据并经实验验证该模型的识别效果,同时与GA-BP、GA-GRNN、MGA-GRNN、SVM进行对比,实验结果表明该识别模型具有更好的运行速度,识别精度为0.96,可实现对矿井通风机故障类型的智能识别. 展开更多
关键词 矿井通风机 故障识别 广义递归神经网络(grnn) 改进遗传算法(MGA) 主元分析(PCA)
下载PDF
基于广义回归神经网络插值的雷达引信回波模拟
20
作者 王洋洋 曹菲 《火箭军工程大学学报》 2024年第5期69-80,共12页
为了更加精确地对雷达引信回波信号进行模拟,以北京市密云区数字高程模型(Digital Elevation Model, DEM)作为地形研究数据进行插值分析和回波模拟,提出了使用广义回归神经网络(Generalized Regression Neural Network,GRNN)进行插值的... 为了更加精确地对雷达引信回波信号进行模拟,以北京市密云区数字高程模型(Digital Elevation Model, DEM)作为地形研究数据进行插值分析和回波模拟,提出了使用广义回归神经网络(Generalized Regression Neural Network,GRNN)进行插值的方法。在插值后的DEM仿真地形上,考虑地形起伏对雷达引信回波遮挡的影响,仿真得到传统插值算法和GRNN插值算法下的雷达引信回波图,通过内插精度和回波分析了算法性能。结果表明:在地貌类型以平原、丘陵为主的地区,相较于传统算法,本文算法能够描绘地形细节,更加精确地模拟回波分布规律。 展开更多
关键词 广义回归神经网络 高程插值算法 精度评价 回波模拟 深度神经网络 数字高程模型
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部