Objective:To address the phylogenetic and phylogeographic relationship between different lineages of Anopheles(An.)subpictus species complex in most parts of the Asian continent by maximum utilization of Internal Tran...Objective:To address the phylogenetic and phylogeographic relationship between different lineages of Anopheles(An.)subpictus species complex in most parts of the Asian continent by maximum utilization of Internal Transcriber Spacer 2(ITS2)and cytochrome C oxidase I(COI)sequences deposited at the GenBank.Methods:Seventy-five ITS2,210 COI and 26 concatenated sequences available in the NCBI database were used.Phylogenetic analysis was performed using Bayesian likelihood trees,whereas median-joining haplotype networks and time-scale divergence trees were generated for phylogeographic analysis.Genetic diversity indices and genetic differentiation were also calculated.Results:Two genetically divergent molecular forms of An.subpictus species complex corresponding to sibling species A and B are established.Species A evolved around 37-82 million years ago in Sri Lanka,India,and the Netherlands,and species B evolved around 22-79 million years ago in Sri Lanka,India,and Myanmar.Vietnam,Thailand,and Cambodia have two molecular forms:one is phylogenetically similar to species B.Other forms differ from species A and B and evolved recently in the above mentioned countries,Indonesia and the Philippines.Genetic subdivision among Sri Lanka,India,and the Netherlands is almost absent.A substantial genetic differentiation was obtained for some populations due to isolation by large geographical distances.Genetic diversity indices reveal the presence of a long-established stable mosquito population,at mutation-drift equilibrium,regardless of population fluctuations.Conclusions:An.subpictus species complex consists of more than two genetically divergent molecular forms.Species A is highly divergent from the rest.Sri Lanka and India contain only species A and B.展开更多
Genetic manipulation(either restraint or enhancement)of the biosynthesis pathway ofα-linolenic acid(ALA)in seed oil is an important goal in Brassica napus breeding.B.napus is a tetraploid plant whose genome often har...Genetic manipulation(either restraint or enhancement)of the biosynthesis pathway ofα-linolenic acid(ALA)in seed oil is an important goal in Brassica napus breeding.B.napus is a tetraploid plant whose genome often har-bors four and six homologous copies,respectively,of the two fatty acid desaturases FAD2 and FAD3,which con-trol the last two steps of ALA biosynthesis during seed oil accumulation.In this study,we compared their promoters,coding sequences,and expression levels in three high-ALA inbred lines 2006L,R8Q10,and YH25005,a low-ALA line A28,a low-ALA/high-oleic-acid accession SW,and the wildtype ZS11.The expression levels of most FAD2 and FAD3 homologs in the three high-ALA accessions were higher than those in ZS11 and much higher than those in A28 and SW.The three high-ALA accessions shared similar sequences with the pro-moters and CDSs of BnFAD3.C4 and BnFAD3.A3.In A28 and SW,substitution of three amino acid residues in BnFAD2.A5 and BnFAD2.C5,an absence of BnFAD2.C1 locus,and a 549 bp long deletion on the BnFAD3.A3 promoter were detected.The profile of BnFAD2 mutation in the two low-ALA accessions A28 and SW is different from that reported in previous studies.The mutations in BnFAD3 in the high-ALA accessions are reported for thefirst time.In identifying the sites of these mutations,we provide detailed information to aid the design of mole-cular markers for accelerated breeding schemes.展开更多
BACKGROUND Ferroptosis has recently been associated with multiple degenerative diseases.Ferroptosis induction in cancer cells is a feasible method for treating neoplastic diseases.However,the association of iron proli...BACKGROUND Ferroptosis has recently been associated with multiple degenerative diseases.Ferroptosis induction in cancer cells is a feasible method for treating neoplastic diseases.However,the association of iron proliferation-related genes with prognosis in HER2+breast cancer(BC)patients is unclear.AIM To identify and evaluate fresh ferroptosis-related biomarkers for HER2+BC.METHODS First,we obtained the mRNA expression profiles and clinical information of HER2+BC patients from the TCGA and METABRIC public databases.A four gene prediction model comprising PROM2,SLC7A11,FANCD2,and FH was subsequently developed in the TCGA cohort and confirmed in the METABRIC cohort.Patients were stratified into high-risk and low-risk groups based on their median risk score,an independent predictor of overall survival(OS).Based on these findings,immune infiltration,mutations,and medication sensitivity were analyzed in various risk groupings.Additionally,we assessed patient prognosis by combining the tumor mutation burden(TMB)with risk score.Finally,we evaluated the expression of critical genes by analyzing single-cell RNA sequencing(scRNA-seq)data from malignant vs normal epithelial cells.RESULTS We found that the higher the risk score was,the worse the prognosis was(P<0.05).We also found that the immune cell infiltration,mutation,and drug sensitivity were different between the different risk groups.The highrisk subgroup was associated with lower immune scores and high TMB.Moreover,we found that the combination of the TMB and risk score could stratify patients into three groups with distinct prognoses.HRisk-HTMB patients had the worst prognosis,whereas LRisk-LTMB patients had the best prognosis(P<0.0001).Analysis of the scRNAseq data showed that PROM2,SLC7A11,and FANCD2 were significantly differentially expressed,whereas FH was not,suggesting that these genes are expressed mainly in cancer epithelial cells(P<0.01).CONCLUSION Our model helps guide the prognosis of HER2+breast cancer patients,and its combination with the TMB can aid in more accurate assessment of patient prognosis and provide new ideas for further diagnosis and treatment.展开更多
Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe n...Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.展开更多
Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the...Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community.展开更多
The discovery of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) in Wuhan, Hubei province, China, in December 2019 raised global health warnings. Quickly, in 2020, the virus crossed borders and infected i...The discovery of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) in Wuhan, Hubei province, China, in December 2019 raised global health warnings. Quickly, in 2020, the virus crossed borders and infected individuals across the world, evolving into the COVID-19 pandemic. Notably, early signs of the virus’s existence were observed in various countries before the initial outbreak in Wuhan. As of 12<sup>th</sup> of April, the respiratory disease had infected over 762 million people worldwide, with over 6.8 million deaths recorded. This has led scientists to focus their efforts on understanding the virus to develop effective means to diagnose, treat, prevent, and control this pandemic. One of the areas of focus is the isolation of this virus, which plays a crucial role in understanding the viral dynamics in the laboratory. In this study, we report the isolation and detection of locally circulating SARS-CoV-2 in Kenya. The isolates were cultured on Vero Cercopithecus cell line (CCL-81) cells, RNA extraction was conducted from the supernatants, and reverse transcriptase-polymerase chain reaction (RT-PCR). Genome sequencing was done to profile the strains phylogenetically and identify novel and previously reported mutations. Vero CCL-81 cells were able to support the growth of SARS-CoV-2 in vitro, and mutations were detected from the two isolates sequenced (001 and 002). Genome sequencing revealed the circulation of two isolates that share a close relationship with the Benin isolate with the D614G common mutation identified along the S protein. These virus isolates will be expanded and made available to the Kenya Ministry of Health and other research institutions to advance SARS-CoV-2 research in Kenya and the region.展开更多
Background: Omicron JN.1 has become the dominant SARS-CoV-2 variant in recent months. JN.1 has the highest number of amino acid mutations in its receptor binding domain (RBD) and has acquired a hallmark L455S mutation...Background: Omicron JN.1 has become the dominant SARS-CoV-2 variant in recent months. JN.1 has the highest number of amino acid mutations in its receptor binding domain (RBD) and has acquired a hallmark L455S mutation. The immune evasion capability of JN.1 is a subject of scientific investigation. The US CDC used SGTF of TaqPath COVID-19 Combo Kit RT-qPCR as proxy indicator of JN.1 infections for evaluation of the effectiveness of updated monovalent XBB.1.5 COVID-19 vaccines against JN.1 and recommended that all persons aged ≥ 6 months should receive an updated COVID-19 vaccine dose. Objective: Recommend Sanger sequencing instead of proxy indicator to diagnose JN.1 infections to generate the data based on which guidelines are made to direct vaccination policies. Methods: The RNA in nasopharyngeal swab specimens from patients with clinical respiratory infection was subjected to nested RT-PCR, targeting a 398-base segment of the N-gene and a 445-base segment of the RBD of SARS-CoV-2 for amplification. The nested PCR amplicons were sequenced. The DNA sequences were analyzed for amino acid mutations. Results: The N-gene sequence showed R203K, G204R and Q229K, the 3 mutations associated with Omicron BA.2.86 (+JN.1). The RBD sequence showed 24 of the 26 known amino acid mutations, including the hallmark L455S mutation for JN.1 and the V483del for BA.2.86 lineage. Conclusions: Sanger sequencing of a 445-base segment of the SARS-CoV-2 RBD is useful for accurate determination of emerging variants. The CDC may consider using Sanger sequencing of the RBD to diagnose JN.1 infections for statistical analysis in making vaccination policies.展开更多
文摘Objective:To address the phylogenetic and phylogeographic relationship between different lineages of Anopheles(An.)subpictus species complex in most parts of the Asian continent by maximum utilization of Internal Transcriber Spacer 2(ITS2)and cytochrome C oxidase I(COI)sequences deposited at the GenBank.Methods:Seventy-five ITS2,210 COI and 26 concatenated sequences available in the NCBI database were used.Phylogenetic analysis was performed using Bayesian likelihood trees,whereas median-joining haplotype networks and time-scale divergence trees were generated for phylogeographic analysis.Genetic diversity indices and genetic differentiation were also calculated.Results:Two genetically divergent molecular forms of An.subpictus species complex corresponding to sibling species A and B are established.Species A evolved around 37-82 million years ago in Sri Lanka,India,and the Netherlands,and species B evolved around 22-79 million years ago in Sri Lanka,India,and Myanmar.Vietnam,Thailand,and Cambodia have two molecular forms:one is phylogenetically similar to species B.Other forms differ from species A and B and evolved recently in the above mentioned countries,Indonesia and the Philippines.Genetic subdivision among Sri Lanka,India,and the Netherlands is almost absent.A substantial genetic differentiation was obtained for some populations due to isolation by large geographical distances.Genetic diversity indices reveal the presence of a long-established stable mosquito population,at mutation-drift equilibrium,regardless of population fluctuations.Conclusions:An.subpictus species complex consists of more than two genetically divergent molecular forms.Species A is highly divergent from the rest.Sri Lanka and India contain only species A and B.
基金The study was financially supported by Projects from Shaanxi Province(2021LLRH-07-03-01 and 2023-ZDLNY-07)Yangling Seed Industry Innovation(YLzy-yc2021-01).The funders had no role in study design,data collection and analysis,decision to publish,or preparation of the manuscript.
文摘Genetic manipulation(either restraint or enhancement)of the biosynthesis pathway ofα-linolenic acid(ALA)in seed oil is an important goal in Brassica napus breeding.B.napus is a tetraploid plant whose genome often har-bors four and six homologous copies,respectively,of the two fatty acid desaturases FAD2 and FAD3,which con-trol the last two steps of ALA biosynthesis during seed oil accumulation.In this study,we compared their promoters,coding sequences,and expression levels in three high-ALA inbred lines 2006L,R8Q10,and YH25005,a low-ALA line A28,a low-ALA/high-oleic-acid accession SW,and the wildtype ZS11.The expression levels of most FAD2 and FAD3 homologs in the three high-ALA accessions were higher than those in ZS11 and much higher than those in A28 and SW.The three high-ALA accessions shared similar sequences with the pro-moters and CDSs of BnFAD3.C4 and BnFAD3.A3.In A28 and SW,substitution of three amino acid residues in BnFAD2.A5 and BnFAD2.C5,an absence of BnFAD2.C1 locus,and a 549 bp long deletion on the BnFAD3.A3 promoter were detected.The profile of BnFAD2 mutation in the two low-ALA accessions A28 and SW is different from that reported in previous studies.The mutations in BnFAD3 in the high-ALA accessions are reported for thefirst time.In identifying the sites of these mutations,we provide detailed information to aid the design of mole-cular markers for accelerated breeding schemes.
基金The Science and Technology Commission of Shanxi province,No.201901D111428.
文摘BACKGROUND Ferroptosis has recently been associated with multiple degenerative diseases.Ferroptosis induction in cancer cells is a feasible method for treating neoplastic diseases.However,the association of iron proliferation-related genes with prognosis in HER2+breast cancer(BC)patients is unclear.AIM To identify and evaluate fresh ferroptosis-related biomarkers for HER2+BC.METHODS First,we obtained the mRNA expression profiles and clinical information of HER2+BC patients from the TCGA and METABRIC public databases.A four gene prediction model comprising PROM2,SLC7A11,FANCD2,and FH was subsequently developed in the TCGA cohort and confirmed in the METABRIC cohort.Patients were stratified into high-risk and low-risk groups based on their median risk score,an independent predictor of overall survival(OS).Based on these findings,immune infiltration,mutations,and medication sensitivity were analyzed in various risk groupings.Additionally,we assessed patient prognosis by combining the tumor mutation burden(TMB)with risk score.Finally,we evaluated the expression of critical genes by analyzing single-cell RNA sequencing(scRNA-seq)data from malignant vs normal epithelial cells.RESULTS We found that the higher the risk score was,the worse the prognosis was(P<0.05).We also found that the immune cell infiltration,mutation,and drug sensitivity were different between the different risk groups.The highrisk subgroup was associated with lower immune scores and high TMB.Moreover,we found that the combination of the TMB and risk score could stratify patients into three groups with distinct prognoses.HRisk-HTMB patients had the worst prognosis,whereas LRisk-LTMB patients had the best prognosis(P<0.0001).Analysis of the scRNAseq data showed that PROM2,SLC7A11,and FANCD2 were significantly differentially expressed,whereas FH was not,suggesting that these genes are expressed mainly in cancer epithelial cells(P<0.01).CONCLUSION Our model helps guide the prognosis of HER2+breast cancer patients,and its combination with the TMB can aid in more accurate assessment of patient prognosis and provide new ideas for further diagnosis and treatment.
基金supported by the National Natural Science Foundation of China,Nos.82071307(to HL),82271362(to HL),82171294(to JW),82371303(to JW),and 82301460(to PX)the Natural Science Foundation of Jiangsu Province,No.BK20211552(to HL)+1 种基金Suzhou Medical Technology Innovation Project-Clinical Frontier,No.SKY2022002(to ZY)the Science and Education Foundation for Health of Suzhou for Youth,No.KJXW2023001(to XL)。
文摘Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.
文摘Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community.
文摘The discovery of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) in Wuhan, Hubei province, China, in December 2019 raised global health warnings. Quickly, in 2020, the virus crossed borders and infected individuals across the world, evolving into the COVID-19 pandemic. Notably, early signs of the virus’s existence were observed in various countries before the initial outbreak in Wuhan. As of 12<sup>th</sup> of April, the respiratory disease had infected over 762 million people worldwide, with over 6.8 million deaths recorded. This has led scientists to focus their efforts on understanding the virus to develop effective means to diagnose, treat, prevent, and control this pandemic. One of the areas of focus is the isolation of this virus, which plays a crucial role in understanding the viral dynamics in the laboratory. In this study, we report the isolation and detection of locally circulating SARS-CoV-2 in Kenya. The isolates were cultured on Vero Cercopithecus cell line (CCL-81) cells, RNA extraction was conducted from the supernatants, and reverse transcriptase-polymerase chain reaction (RT-PCR). Genome sequencing was done to profile the strains phylogenetically and identify novel and previously reported mutations. Vero CCL-81 cells were able to support the growth of SARS-CoV-2 in vitro, and mutations were detected from the two isolates sequenced (001 and 002). Genome sequencing revealed the circulation of two isolates that share a close relationship with the Benin isolate with the D614G common mutation identified along the S protein. These virus isolates will be expanded and made available to the Kenya Ministry of Health and other research institutions to advance SARS-CoV-2 research in Kenya and the region.
文摘Background: Omicron JN.1 has become the dominant SARS-CoV-2 variant in recent months. JN.1 has the highest number of amino acid mutations in its receptor binding domain (RBD) and has acquired a hallmark L455S mutation. The immune evasion capability of JN.1 is a subject of scientific investigation. The US CDC used SGTF of TaqPath COVID-19 Combo Kit RT-qPCR as proxy indicator of JN.1 infections for evaluation of the effectiveness of updated monovalent XBB.1.5 COVID-19 vaccines against JN.1 and recommended that all persons aged ≥ 6 months should receive an updated COVID-19 vaccine dose. Objective: Recommend Sanger sequencing instead of proxy indicator to diagnose JN.1 infections to generate the data based on which guidelines are made to direct vaccination policies. Methods: The RNA in nasopharyngeal swab specimens from patients with clinical respiratory infection was subjected to nested RT-PCR, targeting a 398-base segment of the N-gene and a 445-base segment of the RBD of SARS-CoV-2 for amplification. The nested PCR amplicons were sequenced. The DNA sequences were analyzed for amino acid mutations. Results: The N-gene sequence showed R203K, G204R and Q229K, the 3 mutations associated with Omicron BA.2.86 (+JN.1). The RBD sequence showed 24 of the 26 known amino acid mutations, including the hallmark L455S mutation for JN.1 and the V483del for BA.2.86 lineage. Conclusions: Sanger sequencing of a 445-base segment of the SARS-CoV-2 RBD is useful for accurate determination of emerging variants. The CDC may consider using Sanger sequencing of the RBD to diagnose JN.1 infections for statistical analysis in making vaccination policies.