The division operation is not frequent relatively in traditional applications, but it is increasingly indispensable and important in many modern applications. In this paper, the implementation of modified signed-digit...The division operation is not frequent relatively in traditional applications, but it is increasingly indispensable and important in many modern applications. In this paper, the implementation of modified signed-digit (MSD) floating-point division using Newton-Raphson method on the system of ternary optical computer (TOC) is studied. Since the addition of MSD floating-point is carry-free and the digit width of the system of TOC is large, it is easy to deal with the enough wide data and transform the division operation into multiplication and addition operations. And using data scan and truncation the problem of digits expansion is effectively solved in the range of error limit. The division gets the good results and the efficiency is high. The instance of MSD floating-point division shows that the method is feasible.展开更多
基金Project supported by the Shanghai Leading Academic Discipline Project(Grant No.J50103)the National Natural Science Foundation of China(Grant No.61073049)
文摘The division operation is not frequent relatively in traditional applications, but it is increasingly indispensable and important in many modern applications. In this paper, the implementation of modified signed-digit (MSD) floating-point division using Newton-Raphson method on the system of ternary optical computer (TOC) is studied. Since the addition of MSD floating-point is carry-free and the digit width of the system of TOC is large, it is easy to deal with the enough wide data and transform the division operation into multiplication and addition operations. And using data scan and truncation the problem of digits expansion is effectively solved in the range of error limit. The division gets the good results and the efficiency is high. The instance of MSD floating-point division shows that the method is feasible.