期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用GS-LightGBM机器学习模型识别致密砂岩地层岩性
被引量:
9
1
作者
谷宇峰
张道勇
+3 位作者
鲍志东
郭海晓
周立明
任继红
《地质科技通报》
CAS
CSCD
北大核心
2021年第4期224-234,共11页
以交会图为代表的传统岩性识别图版无法适用于致密砂岩地层,其主要原因是大部分地层岩性的测井响应特征相似度高,难以基于图版分析被有效识别。LightGBM较传统模式识别模型能更高效地解决问题,为此采用该模型识别致密砂岩地层岩性。由于...
以交会图为代表的传统岩性识别图版无法适用于致密砂岩地层,其主要原因是大部分地层岩性的测井响应特征相似度高,难以基于图版分析被有效识别。LightGBM较传统模式识别模型能更高效地解决问题,为此采用该模型识别致密砂岩地层岩性。由于LightGBM在建模时利用了较多的超参数,导致预测结果难以保证为最优,所以采用GS算法进行优化,进而提出GS-LightGBM。实验目的层为姬塬油田西部长4+5段致密砂岩地层。提出模型的预测能力通过设计两个实验来验证。为突出验证效果,实验中加入SVM和XGBoost作为对比模型。实验结果显示,GS-XGBoost和GS-LightGBM的准确率、F 1-score和AUC指标相接近,都最高,但GS-LightGBM的计算时间只有GS-XGBoost的约1/23。实验结果表明,GS-LightGBM模型可在不失精度的情况下,能快速给出预测结果,具备了在致密砂岩地层岩性识别研究上的应用价值和推广性。
展开更多
关键词
致密砂岩地层
岩性识别
SVM模型
XGBoost模型
LightGBM模型
gs优化算法
下载PDF
职称材料
题名
利用GS-LightGBM机器学习模型识别致密砂岩地层岩性
被引量:
9
1
作者
谷宇峰
张道勇
鲍志东
郭海晓
周立明
任继红
机构
自然资源部油气资源战略研究中心
中国石油大学(北京)地球科学学院
出处
《地质科技通报》
CAS
CSCD
北大核心
2021年第4期224-234,共11页
文摘
以交会图为代表的传统岩性识别图版无法适用于致密砂岩地层,其主要原因是大部分地层岩性的测井响应特征相似度高,难以基于图版分析被有效识别。LightGBM较传统模式识别模型能更高效地解决问题,为此采用该模型识别致密砂岩地层岩性。由于LightGBM在建模时利用了较多的超参数,导致预测结果难以保证为最优,所以采用GS算法进行优化,进而提出GS-LightGBM。实验目的层为姬塬油田西部长4+5段致密砂岩地层。提出模型的预测能力通过设计两个实验来验证。为突出验证效果,实验中加入SVM和XGBoost作为对比模型。实验结果显示,GS-XGBoost和GS-LightGBM的准确率、F 1-score和AUC指标相接近,都最高,但GS-LightGBM的计算时间只有GS-XGBoost的约1/23。实验结果表明,GS-LightGBM模型可在不失精度的情况下,能快速给出预测结果,具备了在致密砂岩地层岩性识别研究上的应用价值和推广性。
关键词
致密砂岩地层
岩性识别
SVM模型
XGBoost模型
LightGBM模型
gs优化算法
Keywords
tight sandstone formation
lithology prediction
SVM model
XGBoost model
LightGBM model
gs
optimizing algorithm
分类号
P618.13 [天文地球—矿床学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
利用GS-LightGBM机器学习模型识别致密砂岩地层岩性
谷宇峰
张道勇
鲍志东
郭海晓
周立明
任继红
《地质科技通报》
CAS
CSCD
北大核心
2021
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部