The panicle architecture and grain size of rice affect not only grain yield but also grain quality,especially grain appearance.The erect-panicle(EP)trait controlled by the qpe9-1/dep1 allele has been widely used in hi...The panicle architecture and grain size of rice affect not only grain yield but also grain quality,especially grain appearance.The erect-panicle(EP)trait controlled by the qpe9-1/dep1 allele has been widely used in high-yielding japonica rice breeding,but usually accompanied with moderate appearance of milled rice.The null gs9 allele shows a good potential for improving grain shape and appearance.However,GS9 and qPE9-1/DEP1 loci are tightly linked,and their interaction is unclear,which obviously restricts their utilization in modern rice breeding.In the present study,comparative analyses of protein and mRNA levels revealed that GS9 and qPE9-1 function independently.Three nearisogenic lines(NILs)carrying various allelic combinations of these two loci,NIL(gs9/qpe9-1),NIL(GS9/qPE9-1)and NIL(gs9/qPE9-1),in the EP japonica cultivar 2661(GS9/qpe9-1)background were developed for genetic interaction analysis.GS9 and qPE9-1 had additive effects on determining grain size,and the null gs9 allele could decrease grain chalkiness and improve grain appearance without affecting plant and panicle architecture in EP japonica cultivars.Additionally,introgression lines(ILs)developed in another released EP japonica cultivar Wuyujing 27(WYJ27)background showed the same additive effect and the feasibility of utilizing the gs9 allele to improve grain appearance quality in high-yielding EP cultivars.This study provides an effective strategy for rice breeders to improve rice grain appearance in EP japonica and related cultivars.展开更多
本文阐述"Gs SS 3+9"英语教学模式的产生背景、内容以及意义,认为教师应结合课堂和生活实际,在课前、课内、课后三个阶段努力挖掘"生态""美观""实用"三个元素,在课堂上的"九步教学"...本文阐述"Gs SS 3+9"英语教学模式的产生背景、内容以及意义,认为教师应结合课堂和生活实际,在课前、课内、课后三个阶段努力挖掘"生态""美观""实用"三个元素,在课堂上的"九步教学"环节中落实三元素,对"story"和"song"进行创作、实践和研究,为学生提供一个欢快愉悦的学习环境。展开更多
基金This work was supported by the National Natural Science Foundation of China(31971914)the National Key Research and Development Program of China(2016YFD0100501)+3 种基金the Key Research and Development Program of Jiangsu Province,China(BE2018357)the Science Fund for Distinguished Young Scholars of Jiangsu Province,China(BK20200045)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(18)1001)the Jiangsu PAPD Talent Project,and the Yong Elite Scientists Sponsorship Program by China Association for Science and Technology(2018QNRC001).
文摘The panicle architecture and grain size of rice affect not only grain yield but also grain quality,especially grain appearance.The erect-panicle(EP)trait controlled by the qpe9-1/dep1 allele has been widely used in high-yielding japonica rice breeding,but usually accompanied with moderate appearance of milled rice.The null gs9 allele shows a good potential for improving grain shape and appearance.However,GS9 and qPE9-1/DEP1 loci are tightly linked,and their interaction is unclear,which obviously restricts their utilization in modern rice breeding.In the present study,comparative analyses of protein and mRNA levels revealed that GS9 and qPE9-1 function independently.Three nearisogenic lines(NILs)carrying various allelic combinations of these two loci,NIL(gs9/qpe9-1),NIL(GS9/qPE9-1)and NIL(gs9/qPE9-1),in the EP japonica cultivar 2661(GS9/qpe9-1)background were developed for genetic interaction analysis.GS9 and qPE9-1 had additive effects on determining grain size,and the null gs9 allele could decrease grain chalkiness and improve grain appearance without affecting plant and panicle architecture in EP japonica cultivars.Additionally,introgression lines(ILs)developed in another released EP japonica cultivar Wuyujing 27(WYJ27)background showed the same additive effect and the feasibility of utilizing the gs9 allele to improve grain appearance quality in high-yielding EP cultivars.This study provides an effective strategy for rice breeders to improve rice grain appearance in EP japonica and related cultivars.