目的探讨METTL14通过调控巨噬细胞分化抑制宫颈癌病理性发展及相关机制。方法检测宫颈癌病变样本METTL14 m RNA和蛋白,以及IL-6、iNOS、Arg-1和CD206表达变化。PMA诱导THP-1细胞转化为巨噬细胞,慢病毒过表达或抑制METTL14表达,检测IL-6...目的探讨METTL14通过调控巨噬细胞分化抑制宫颈癌病理性发展及相关机制。方法检测宫颈癌病变样本METTL14 m RNA和蛋白,以及IL-6、iNOS、Arg-1和CD206表达变化。PMA诱导THP-1细胞转化为巨噬细胞,慢病毒过表达或抑制METTL14表达,检测IL-6、iNO、Arg-1和CD206表达变化以及PI3K/AKT/GSK3β/β-catenin信号通路相关蛋白表达情况。随后加入PI3K/AKT/GSK3β/β-catenin信号通路激动剂和抑制剂,检测过表达或抑制METTL14后,巨噬细胞IL-6、iNO、Arg-1和CD206表达变化,并取其上清制成条件培养基,孵育Hela细胞,检测细胞凋亡和增殖情况。结果1)宫颈癌病变组织中METTL14 mRNA和蛋白表达降低(P<0.05),巨噬细胞M1型标志物IL-6和iNOS表达明显降低(P<0.05),而M2型标志物Arg-1和CD206表达明显升高(P<0.05)。2)巨噬细胞过表达METTL14后,IL-6和iNOS表达明显升高(P<0.05),而Arg-1和CD206表达明显降低(P<0.05),M1/M2比例升高;抑制METTL14表达后,M1型标志物降低(P<0.05),M2型标志物升高(P<0.05),M1/M2比例降低。3)巨噬细胞中转染OE-METTL14慢病毒组PI3K/AKT/GSK3β/β-catenin信号通路被抑制(P<0.05);加入PI3K/AKT激动剂后,M1型标志物降低而M2型标记物升高(P<0.05),M1/M2比例降低;OE-METTL14可逆转此趋势。Sh-METTL14慢病毒组PI3K/AKT/GSK3β/β-catenin信号通路被激活(P<0.05),加入PI3K/AKT抑制剂后,M1型标志物升高而M2型标记物降低(P<0.05),M1/M2比例升高;Sh-METTL14可逆转此趋势。4)取转染OE-METTL14慢病毒后的巨噬细胞上清培养Hela细胞,可见细胞凋亡明显增多(P<0.05),增殖明显减少(P<0.05)。Sh-METTL14组的Hela细胞则表现出细胞凋亡减少(P<0.05),增殖增多(P<0.05)。结论METTL14通过PI3K/AKT/GSK3β/β-catenin信号通路调控巨噬细胞分化可能有促进宫颈癌细胞凋亡,抑制增殖的作用。展开更多
Objective:The tyrosine phosphatase SHP2 has a dual role in cancer initiation and progression in a tissue type-dependent manner.Several studies have linked SHP2 to the aggressive behavior of breast cancer cells and poo...Objective:The tyrosine phosphatase SHP2 has a dual role in cancer initiation and progression in a tissue type-dependent manner.Several studies have linked SHP2 to the aggressive behavior of breast cancer cells and poorer outcomes in people with cancer.Nevertheless,the mechanistic details of how SHP2 promotes breast cancer progression remain largely undefined.Methods:The relationship between SHP2 expression and the prognosis of patients with breast cancer was investigated by using the TCGA and GEO databases.The expression of SHP2 in breast cancer tissues was analyzed by immunohistochemistry.CRISPR/Cas9 technology was used to generate SHP2-knockout breast cancer cells.Cell-counting kit-8,colony formation,cell cycle,and EdU incorporation assays,as well as a tumor xenograft model were used to examine the function of SHP2 in breast cancer proliferation.Quantitative RT-PCR,western blotting,immunofluorescence staining,and ubiquitination assays were used to explore the molecular mechanism through which SHP2 regulates breast cancer proliferation.Results:High SHP2 expression is correlated with poor prognosis in patients with breast cancer.SHP2 is required for the proliferation of breast cancer cellsin vitro and tumor growthin vivo through regulation of Cyclin D1 abundance,thereby accelerating cell cycle progression.Notably,SHP2 modulates the ubiquitin–proteasome-dependent degradation of Cyclin D1viathe PI3K/AKT/GSK3βsignaling pathway.SHP2 knockout attenuates the activation of PI3K/AKT signaling and causes the dephosphorylation and resultant activation of GSK3β.GSK3βthen mediates phosphorylation of Cyclin D1 at threonine 286,thereby promoting the translocation of Cyclin D1 from the nucleus to the cytoplasm and facilitating Cyclin D1 degradation through the ubiquitin–proteasome system.Conclusions:Our study uncovered the mechanism through which SHP2 regulates breast cancer proliferation.SHP2 may therefore potentially serve as a therapeutic target for breast cancer.展开更多
Astaxanthin (ATX) , the most abundant flavonoids in propolis, has been proven to exert neuroprotective property against cerebral ischemia-induced apoptosis. However, the mechanisms by which ATX mediates its thera- p...Astaxanthin (ATX) , the most abundant flavonoids in propolis, has been proven to exert neuroprotective property against cerebral ischemia-induced apoptosis. However, the mechanisms by which ATX mediates its thera- peutic effects in vitro are unclear. In the present study, the article explored the underlying mechanisms involved in the protective effects of ATX via the PI3IC/Akt/GSK3β/Nrf2 signaling pathway in SH-SY5Y cells. For study of mechanism, the phosphoinositide 3 kinase (PI3K)-Akt inhibitor LY294002, Glycogen synthase kinase 3β (GSK313) inhibitor LiC1 were used. Pre-treatmentwith ATX for 24h significantly reduced the OGD induced viability loss, apoptotic rate and attenuated OGD-mediated ROS production. In addition, ATX inhibited OGD-induced mito- chondrial membrane potential, decreased Bcl-2/Bax ratio. PI3 IC/Akt/GSK3β/Nrf2 signaling pathway activation in SH-SY5Y was tested by Western blot. Nrf2 expression was increasing by ATX and counteracted by PI3IC/Akt in- hibitor LY294002, GSK3β inhibitor LiC1 in SH-SY5Y. Nrf2 Immunocytochemistry showed Nrf2 nuclear transloca- tion was increasing by ATX and counteracted by LY294002 or LiC1 in SH-SY5Y, respectively. It may be suggested that astaxanthin against cerebral ischemia-induced apoptosis in vitro via a programmed PI3 IC/Akt/GSK3β/Nrf2 sig- naling pathway in vitro.展开更多
Background Transient sublethal ischemia is known as ischemic preconditioning, which enables cells and tissues to survive subsequent prolonged lethal ischemic injury. Ischemic preconditioning exerts neuroprotection thr...Background Transient sublethal ischemia is known as ischemic preconditioning, which enables cells and tissues to survive subsequent prolonged lethal ischemic injury. Ischemic preconditioning exerts neuroprotection through phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Cbl-b belongs to the Casitas B-lineage lymphoma (Cbl) family, and it can regulate the cell signal transduction.The roles of ubiquitin ligase Cbl-b and PI3K/Akt pathway and the relationship between them in oxygen-glucose deprivation preconditioninq (OGDPC) in PC12 cells were investiaated in the ore.~e.nt study展开更多
文摘目的探讨METTL14通过调控巨噬细胞分化抑制宫颈癌病理性发展及相关机制。方法检测宫颈癌病变样本METTL14 m RNA和蛋白,以及IL-6、iNOS、Arg-1和CD206表达变化。PMA诱导THP-1细胞转化为巨噬细胞,慢病毒过表达或抑制METTL14表达,检测IL-6、iNO、Arg-1和CD206表达变化以及PI3K/AKT/GSK3β/β-catenin信号通路相关蛋白表达情况。随后加入PI3K/AKT/GSK3β/β-catenin信号通路激动剂和抑制剂,检测过表达或抑制METTL14后,巨噬细胞IL-6、iNO、Arg-1和CD206表达变化,并取其上清制成条件培养基,孵育Hela细胞,检测细胞凋亡和增殖情况。结果1)宫颈癌病变组织中METTL14 mRNA和蛋白表达降低(P<0.05),巨噬细胞M1型标志物IL-6和iNOS表达明显降低(P<0.05),而M2型标志物Arg-1和CD206表达明显升高(P<0.05)。2)巨噬细胞过表达METTL14后,IL-6和iNOS表达明显升高(P<0.05),而Arg-1和CD206表达明显降低(P<0.05),M1/M2比例升高;抑制METTL14表达后,M1型标志物降低(P<0.05),M2型标志物升高(P<0.05),M1/M2比例降低。3)巨噬细胞中转染OE-METTL14慢病毒组PI3K/AKT/GSK3β/β-catenin信号通路被抑制(P<0.05);加入PI3K/AKT激动剂后,M1型标志物降低而M2型标记物升高(P<0.05),M1/M2比例降低;OE-METTL14可逆转此趋势。Sh-METTL14慢病毒组PI3K/AKT/GSK3β/β-catenin信号通路被激活(P<0.05),加入PI3K/AKT抑制剂后,M1型标志物升高而M2型标记物降低(P<0.05),M1/M2比例升高;Sh-METTL14可逆转此趋势。4)取转染OE-METTL14慢病毒后的巨噬细胞上清培养Hela细胞,可见细胞凋亡明显增多(P<0.05),增殖明显减少(P<0.05)。Sh-METTL14组的Hela细胞则表现出细胞凋亡减少(P<0.05),增殖增多(P<0.05)。结论METTL14通过PI3K/AKT/GSK3β/β-catenin信号通路调控巨噬细胞分化可能有促进宫颈癌细胞凋亡,抑制增殖的作用。
基金This work was supported by grants from the National Natural S&ence Foundation of China(grant Nos.81372844,81472474,81772804 and 81903092)Tianjin Municipal Science and Technology Commission(grant No.16JCYBJC25400)+1 种基金Changjiang Researchers and Innovative Research Team(grant No.IRT_14R40)Postgraduate Innovation Fund of"13th Five-Year Comprehensive Investment,"Tianjin Medical University(grant No.YJSCX201716).
文摘Objective:The tyrosine phosphatase SHP2 has a dual role in cancer initiation and progression in a tissue type-dependent manner.Several studies have linked SHP2 to the aggressive behavior of breast cancer cells and poorer outcomes in people with cancer.Nevertheless,the mechanistic details of how SHP2 promotes breast cancer progression remain largely undefined.Methods:The relationship between SHP2 expression and the prognosis of patients with breast cancer was investigated by using the TCGA and GEO databases.The expression of SHP2 in breast cancer tissues was analyzed by immunohistochemistry.CRISPR/Cas9 technology was used to generate SHP2-knockout breast cancer cells.Cell-counting kit-8,colony formation,cell cycle,and EdU incorporation assays,as well as a tumor xenograft model were used to examine the function of SHP2 in breast cancer proliferation.Quantitative RT-PCR,western blotting,immunofluorescence staining,and ubiquitination assays were used to explore the molecular mechanism through which SHP2 regulates breast cancer proliferation.Results:High SHP2 expression is correlated with poor prognosis in patients with breast cancer.SHP2 is required for the proliferation of breast cancer cellsin vitro and tumor growthin vivo through regulation of Cyclin D1 abundance,thereby accelerating cell cycle progression.Notably,SHP2 modulates the ubiquitin–proteasome-dependent degradation of Cyclin D1viathe PI3K/AKT/GSK3βsignaling pathway.SHP2 knockout attenuates the activation of PI3K/AKT signaling and causes the dephosphorylation and resultant activation of GSK3β.GSK3βthen mediates phosphorylation of Cyclin D1 at threonine 286,thereby promoting the translocation of Cyclin D1 from the nucleus to the cytoplasm and facilitating Cyclin D1 degradation through the ubiquitin–proteasome system.Conclusions:Our study uncovered the mechanism through which SHP2 regulates breast cancer proliferation.SHP2 may therefore potentially serve as a therapeutic target for breast cancer.
文摘Astaxanthin (ATX) , the most abundant flavonoids in propolis, has been proven to exert neuroprotective property against cerebral ischemia-induced apoptosis. However, the mechanisms by which ATX mediates its thera- peutic effects in vitro are unclear. In the present study, the article explored the underlying mechanisms involved in the protective effects of ATX via the PI3IC/Akt/GSK3β/Nrf2 signaling pathway in SH-SY5Y cells. For study of mechanism, the phosphoinositide 3 kinase (PI3K)-Akt inhibitor LY294002, Glycogen synthase kinase 3β (GSK313) inhibitor LiC1 were used. Pre-treatmentwith ATX for 24h significantly reduced the OGD induced viability loss, apoptotic rate and attenuated OGD-mediated ROS production. In addition, ATX inhibited OGD-induced mito- chondrial membrane potential, decreased Bcl-2/Bax ratio. PI3 IC/Akt/GSK3β/Nrf2 signaling pathway activation in SH-SY5Y was tested by Western blot. Nrf2 expression was increasing by ATX and counteracted by PI3IC/Akt in- hibitor LY294002, GSK3β inhibitor LiC1 in SH-SY5Y. Nrf2 Immunocytochemistry showed Nrf2 nuclear transloca- tion was increasing by ATX and counteracted by LY294002 or LiC1 in SH-SY5Y, respectively. It may be suggested that astaxanthin against cerebral ischemia-induced apoptosis in vitro via a programmed PI3 IC/Akt/GSK3β/Nrf2 sig- naling pathway in vitro.
文摘Background Transient sublethal ischemia is known as ischemic preconditioning, which enables cells and tissues to survive subsequent prolonged lethal ischemic injury. Ischemic preconditioning exerts neuroprotection through phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Cbl-b belongs to the Casitas B-lineage lymphoma (Cbl) family, and it can regulate the cell signal transduction.The roles of ubiquitin ligase Cbl-b and PI3K/Akt pathway and the relationship between them in oxygen-glucose deprivation preconditioninq (OGDPC) in PC12 cells were investiaated in the ore.~e.nt study