Acoustic signals play an essential role in machine state monitoring. Efficient processing of real-time machine acoustic signals improves production quality. However, generating semantically useful information from sou...Acoustic signals play an essential role in machine state monitoring. Efficient processing of real-time machine acoustic signals improves production quality. However, generating semantically useful information from sound signals is an ill-defined problem that exhibits a highly non-linear relationship between sound and subjective perceptions. This paper outlines two neural network models to analyze and classify acoustic signals emanating from machines:(i) a backpropagation neural network (BPNN);and (ii) a convolutional neural network (CNN). Microphones are used to collect acoustic data for training models from a computer numeric control (CNC) lathe. Numerical experiments demonstrate that CNN performs better than the BP-NN.展开更多
文摘Acoustic signals play an essential role in machine state monitoring. Efficient processing of real-time machine acoustic signals improves production quality. However, generating semantically useful information from sound signals is an ill-defined problem that exhibits a highly non-linear relationship between sound and subjective perceptions. This paper outlines two neural network models to analyze and classify acoustic signals emanating from machines:(i) a backpropagation neural network (BPNN);and (ii) a convolutional neural network (CNN). Microphones are used to collect acoustic data for training models from a computer numeric control (CNC) lathe. Numerical experiments demonstrate that CNN performs better than the BP-NN.