Based on a short anode GTO structure (SA-GTO),a novel GTO structure called an injection efficiency controlled gate turn off thyristor (IEC-GTO) is proposed,in which the injection efficiency can be controlled via a...Based on a short anode GTO structure (SA-GTO),a novel GTO structure called an injection efficiency controlled gate turn off thyristor (IEC-GTO) is proposed,in which the injection efficiency can be controlled via an additional thin oxide layer located in the short anode contact region. The forward blocking, conducting, and switching characteristics are analyzed and compared with an SA-GTO and conventional GTO. The results show that the IEC-GTO can obtain a better trade-off relation between on-state and turn-off characteristics. Additionally,the width of the oxide layer covering the anode region and the doping concentration of the anode region are optimized, the process feasibility is analyzed, and a realization scheme is given. The results show that the introduction of an oxide layer would not increase the complexity of process of the IEC-GTO.展开更多
An ultra-high voltage 4H-silicon carbide(Si C) gate turn-off(GTO) thyristor for low switching time is proposed and analyzed by numerical simulation. It features a double epitaxial p-base in which an extra electrical f...An ultra-high voltage 4H-silicon carbide(Si C) gate turn-off(GTO) thyristor for low switching time is proposed and analyzed by numerical simulation. It features a double epitaxial p-base in which an extra electrical field is induced to enhance the transportation of the electrons in the thin p-base and reduce recombination. As a result, the turn-on characteristics are improved. What is more, to obtain a low turn-off loss, an alternating p^+/n^+region formed in the backside acts as the anode in the GTO thyristor. Consequently, another path formed by the reverse-biased n^+–p junction accelerates the fast removal of excess electrons during turn-off. This work demonstrates that the turn-on time and turn-off time of the new structure are reduced to 37 ns and 783.1 ns, respectively, under a bus voltage of 8000 V and load current of 100 A/cm^2.展开更多
近年来,基于宽禁带半导体材料碳化硅(SiC)的高压功率器件迅速发展。在SiC高压功率器件中,门极可关断晶闸管(GTO)具有高阻断电压、大电流、快速关断、低正向导通压降以及耐高温等优点。文章主要阐述了SiC GTO在衬底材料、外延材料、载流...近年来,基于宽禁带半导体材料碳化硅(SiC)的高压功率器件迅速发展。在SiC高压功率器件中,门极可关断晶闸管(GTO)具有高阻断电压、大电流、快速关断、低正向导通压降以及耐高温等优点。文章主要阐述了SiC GTO在衬底材料、外延材料、载流子寿命和阻断电压等方面近十几年的发展历程和现状;介绍了具有改良SiC GTO开关特性的碳化硅发射极关断晶闸管(SiC ETO)的特性及其结构和原理;分析了6 500 V SiC ETO的正向导通特性和阻断特性,并通过实验验证了其快速关断特性。最后从器件及其应用的角度提出了SiC GTO晶闸管技术未来发展的方向。展开更多
文中提出一款基于自主设计的尺寸为8mm×8mm的10kV碳化硅(silicon carbide,SiC)门极可关断晶闸管(gate-turn-off thyristor,GTO)单芯片封装的焊接式模块。详细介绍10kV SiC GTO模块的设计与制造工艺,通过对比裸芯片与封装后模块在10...文中提出一款基于自主设计的尺寸为8mm×8mm的10kV碳化硅(silicon carbide,SiC)门极可关断晶闸管(gate-turn-off thyristor,GTO)单芯片封装的焊接式模块。详细介绍10kV SiC GTO模块的设计与制造工艺,通过对比裸芯片与封装后模块在10.5kV阻断电压下的漏电流,验证模块绝缘设计冗余和封装工艺,对模块的动态、静态、极限过流能力、关断增益等性能进行测试并给出初步测试结果。展开更多
文摘Based on a short anode GTO structure (SA-GTO),a novel GTO structure called an injection efficiency controlled gate turn off thyristor (IEC-GTO) is proposed,in which the injection efficiency can be controlled via an additional thin oxide layer located in the short anode contact region. The forward blocking, conducting, and switching characteristics are analyzed and compared with an SA-GTO and conventional GTO. The results show that the IEC-GTO can obtain a better trade-off relation between on-state and turn-off characteristics. Additionally,the width of the oxide layer covering the anode region and the doping concentration of the anode region are optimized, the process feasibility is analyzed, and a realization scheme is given. The results show that the introduction of an oxide layer would not increase the complexity of process of the IEC-GTO.
基金Project supported by the National Natural Science Foundation of China(Grant No.51677149)
文摘An ultra-high voltage 4H-silicon carbide(Si C) gate turn-off(GTO) thyristor for low switching time is proposed and analyzed by numerical simulation. It features a double epitaxial p-base in which an extra electrical field is induced to enhance the transportation of the electrons in the thin p-base and reduce recombination. As a result, the turn-on characteristics are improved. What is more, to obtain a low turn-off loss, an alternating p^+/n^+region formed in the backside acts as the anode in the GTO thyristor. Consequently, another path formed by the reverse-biased n^+–p junction accelerates the fast removal of excess electrons during turn-off. This work demonstrates that the turn-on time and turn-off time of the new structure are reduced to 37 ns and 783.1 ns, respectively, under a bus voltage of 8000 V and load current of 100 A/cm^2.
文摘近年来,基于宽禁带半导体材料碳化硅(SiC)的高压功率器件迅速发展。在SiC高压功率器件中,门极可关断晶闸管(GTO)具有高阻断电压、大电流、快速关断、低正向导通压降以及耐高温等优点。文章主要阐述了SiC GTO在衬底材料、外延材料、载流子寿命和阻断电压等方面近十几年的发展历程和现状;介绍了具有改良SiC GTO开关特性的碳化硅发射极关断晶闸管(SiC ETO)的特性及其结构和原理;分析了6 500 V SiC ETO的正向导通特性和阻断特性,并通过实验验证了其快速关断特性。最后从器件及其应用的角度提出了SiC GTO晶闸管技术未来发展的方向。
文摘文中提出一款基于自主设计的尺寸为8mm×8mm的10kV碳化硅(silicon carbide,SiC)门极可关断晶闸管(gate-turn-off thyristor,GTO)单芯片封装的焊接式模块。详细介绍10kV SiC GTO模块的设计与制造工艺,通过对比裸芯片与封装后模块在10.5kV阻断电压下的漏电流,验证模块绝缘设计冗余和封装工艺,对模块的动态、静态、极限过流能力、关断增益等性能进行测试并给出初步测试结果。