A silkworm gene for fibroin was introduced into the upland cotton WC line by Agrobacterium-mediated transformation. PCR detection for fibroin, nptII and gus genes, Kanamycin (Km)-resistance analysis and GUS-histochemi...A silkworm gene for fibroin was introduced into the upland cotton WC line by Agrobacterium-mediated transformation. PCR detection for fibroin, nptII and gus genes, Kanamycin (Km)-resistance analysis and GUS-histochemical assay were conducted on 30 regenerated plants from 9 callus lines, and 17 positive plants were obtained by these 5 screening methods. By Km-resistance analysis and PCR for fibroin, 6 homozygous lines in T3 were obtained. Southern blot and Northern bolt demonstrated that the fibroin gene was inserted into the genome of these 6 lines, stably inherited and expressed. Compared to the control, the surface structure of mature fiber in the 6 lines was significantly distorted and an increased number of convolution was observed by scanning electron microscopy (SEM). Fiber quality traits analysis indicated that fiber elongation of the 6 homozygous lines was all increased and fiber strength of 3 lines was enhanced. These results indicated that fibroin expression influenced cotton fiber structure and quality, suggesting that fibroin has great potential for improving cotton fiber quality by genetic engineering.展开更多
基金Supported by National High Technology Research and Development Program of China (Grant No. 2006AA100105)Science & Technology Pillar Program of Jiangsu Province (Grant No. BE2008310)Programme of Introducing Talents of Discipline to Universities (Grant No. B08025)
文摘A silkworm gene for fibroin was introduced into the upland cotton WC line by Agrobacterium-mediated transformation. PCR detection for fibroin, nptII and gus genes, Kanamycin (Km)-resistance analysis and GUS-histochemical assay were conducted on 30 regenerated plants from 9 callus lines, and 17 positive plants were obtained by these 5 screening methods. By Km-resistance analysis and PCR for fibroin, 6 homozygous lines in T3 were obtained. Southern blot and Northern bolt demonstrated that the fibroin gene was inserted into the genome of these 6 lines, stably inherited and expressed. Compared to the control, the surface structure of mature fiber in the 6 lines was significantly distorted and an increased number of convolution was observed by scanning electron microscopy (SEM). Fiber quality traits analysis indicated that fiber elongation of the 6 homozygous lines was all increased and fiber strength of 3 lines was enhanced. These results indicated that fibroin expression influenced cotton fiber structure and quality, suggesting that fibroin has great potential for improving cotton fiber quality by genetic engineering.