期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
一种基于改进GWO算法的风-光-储联合系统优化调度方法 被引量:1
1
作者 苏畅宇 吴鹏 +3 位作者 马宇超 王鼎 沈金阳 陈信华 《光源与照明》 2023年第4期174-176,共3页
当前,风电、光伏等可再生能源逐渐取代火电,同时也为电网带来了较强的不确定性。为了解决该问题,需要对电网进行调度补偿。风能、光能等可再生能源在并入电力系统时易产生较大波动。通过建立风-光-储联合系统数学模型,并应用改进GWO算... 当前,风电、光伏等可再生能源逐渐取代火电,同时也为电网带来了较强的不确定性。为了解决该问题,需要对电网进行调度补偿。风能、光能等可再生能源在并入电力系统时易产生较大波动。通过建立风-光-储联合系统数学模型,并应用改进GWO算法求解模型,可以减少风-光发电并网时对系统的冲击。文章提出了基于改进GWO算法的风-光-储联合系统优化调度方法,并验证了方法的可行性。 展开更多
关键词 改进gwo算法 风-光-储 风力发电 光伏发电 运行调度
下载PDF
基于改进GWO算法的高校教学管理系统排课算法研究 被引量:2
2
作者 田方 《微型电脑应用》 2020年第10期35-38,共4页
高校办学规模的扩大使得高校排课面临巨大挑战,对此采用改进的GWO算法对高校教学管理系统排课算法进行了研究。分析了GWO算法的原理和流程,在此基础上运用混沌理论,采用Chebyshev混沌序列生成GWO算法的初始化灰狼种群,同时采用莱维飞行... 高校办学规模的扩大使得高校排课面临巨大挑战,对此采用改进的GWO算法对高校教学管理系统排课算法进行了研究。分析了GWO算法的原理和流程,在此基础上运用混沌理论,采用Chebyshev混沌序列生成GWO算法的初始化灰狼种群,同时采用莱维飞行来改进灰狼位置的更新公式,得到了改进的GWO算法。通过对A大学排课的优化仿真试验,验证了改进的GWO算法避免了算法陷入局部最优,达到了良好的排课优化效果。该研究对排课系统的优化具有一定的参考价值。 展开更多
关键词 排课问题 改进gwo算法 Chebyshev混沌序列
下载PDF
基于GWO-Prophet的商品销售预测研究
3
作者 曾文烜 高永平 《计算机与数字工程》 2024年第3期659-664,699,共7页
零售企业的各项经营活动都离不开商品的销售情况,对商品的销售预测为企业制定生产计划与经营决策等活动提供重要的依据。针对企业销售额预测中销售额时间序列受外界条件影响大,预测精度低等问题,论文提出了一种基于GWO-Prophet的商品销... 零售企业的各项经营活动都离不开商品的销售情况,对商品的销售预测为企业制定生产计划与经营决策等活动提供重要的依据。针对企业销售额预测中销售额时间序列受外界条件影响大,预测精度低等问题,论文提出了一种基于GWO-Prophet的商品销售预测方法。基于某零售企业2015年-2018年销售额数据,通过Prophet模型将高维的销售额数据分别构建对应趋势项、季节项、节假日项、残差项的低维时序特征分量,分别用这些低维特征分量进行拟合后通过加法模型累加来预测未来一年的销售额数据;通过灰狼寻优算法(GWO)对Prophet模型参数进行智能寻优,防止模型陷入局部最优从而提高模型的精确度,通过灰狼寻优算法优化后的Prophet模型能更好地拟合突变点,季节项,节假日项等外界因素对销售额的影响。以MAE、MAPE和RMSE作为模型评估的指标,结果表明,基于GWO-Prophet模型的预测精度不仅优于单一的Prophet模型,还优于其他如ARIMA、SARIMA、LSTM对比模型。 展开更多
关键词 Prophet模型 gwo算法 时间序列 销售预测 可分解模型
下载PDF
基于改进灰狼优化算法的含光伏配电网动态无功优化
4
作者 于惠钧 马凡烁 +2 位作者 陈刚 杨驰泽 李嘉轩 《电气技术》 2024年第4期7-15,58,共10页
针对光伏并网对配电网造成的电压波动、线损增加,以及光伏和负荷出力的不确定性等问题,本文构建基于二阶锥规划的线性凸优化模型,通过控制有载调压变压器和电容器组动作,以及光伏逆变器和静止无功发生器无功补偿能力约束,对日前日内双... 针对光伏并网对配电网造成的电压波动、线损增加,以及光伏和负荷出力的不确定性等问题,本文构建基于二阶锥规划的线性凸优化模型,通过控制有载调压变压器和电容器组动作,以及光伏逆变器和静止无功发生器无功补偿能力约束,对日前日内双时间尺度无功优化模型进行动态分析,在简化求解过程的同时加大找到全局最优解的可能性。提出一种基于混沌学习初始化、非线性收敛因子、最优粒子柯西扰动结合蜘蛛猴算法位置更新方式的改进灰狼优化算法,防止算法陷入局部最优并增强其全局搜索能力。最后,运用改进的灰狼优化算法对含光伏的IEEE 33节点系统进行建模仿真,结果表明该算法具有寻优效率高、收敛速度快的优点,验证了算法的可行性和高效性。 展开更多
关键词 配电网 光伏发电 动态无功优化 二阶锥规划 灰狼优化算法(gwo)
下载PDF
基于GWO-CNN的刮板输送机减速器故障诊断
5
作者 曹帅 《煤矿机械》 2024年第5期162-165,共4页
刮板输送机减速器故障诊断对于井下正常有序生产至关重要。首先基于振动分析、温度检测与油液分析建立刮板输送机减速器故障诊断指标体系;然后运用深度学习中的卷积神经网络(CNN)搭建模型框架,结合灰狼优化(GWO)算法优化模型超参数,建... 刮板输送机减速器故障诊断对于井下正常有序生产至关重要。首先基于振动分析、温度检测与油液分析建立刮板输送机减速器故障诊断指标体系;然后运用深度学习中的卷积神经网络(CNN)搭建模型框架,结合灰狼优化(GWO)算法优化模型超参数,建立基于GWO-CNN的刮板输送机减速器故障诊断模型;最后建立BP、GWO-BP、支持向量机(SVM)、GWO-SVM、CNN模型进行对比验证,GWO-CNN模型预测结果的准确率最高,能够有效地挖掘数据中的关联特征,并具备强大的泛化能力,能够有效减少刮板输送机事故的发生并保障矿工的安全。 展开更多
关键词 刮板输送机减速器 故障诊断 指标体系 gwo算法 CNN预测模型
下载PDF
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用
6
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(gwo) 梯度提升树算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
下载PDF
基于改进狼群算法-深度置信网络(IGWO-DBN)模型的旋风分离器压降预测
7
作者 李清亮 林焕明 +4 位作者 吴振宙 邓立 廖志文 王声明 何伟宏 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期107-115,共9页
针对目前旋风分离器压降计算模型在准确性和实用性上的不足,为更好地指导旋风分离器的结构设计和性能优化,采用深度学习方法对其压降进行了预测。选取了影响压降的7个几何参数,采用深度学习中的深度置信网络(deep belief network,DBN)... 针对目前旋风分离器压降计算模型在准确性和实用性上的不足,为更好地指导旋风分离器的结构设计和性能优化,采用深度学习方法对其压降进行了预测。选取了影响压降的7个几何参数,采用深度学习中的深度置信网络(deep belief network,DBN)对旋风分离器压降数据进行预测,并利用改进的狼群算法(improved grey wolf optimizer,IGWO)对DBN模型的初始化权重和偏置参数进行寻优,构建IGWO-DBN组合模型,同时与几种传统计算模型和机器学习模型的预测结果进行对比。结果表明,IGWO-DBN模型在计算精度上优于Shepherd-Lapple模型、Casal模型等传统计算模型,并优于反向传播神经网络(back propagation neural network,BPNN)、支持向量机(support vector machine,SVM)、极限学习机(extreme learning machine,ELM)等机器学习模型,计算效率大幅提升,且具有较好的泛化性和鲁棒性,可用于旋风分离器压降参数的预测。 展开更多
关键词 狼群算法(gwo) 深度置信网络(DBN) 旋风分离器 压降 模型
下载PDF
基于GWO-BP神经网络算法的WFGD系统在线优化 被引量:3
8
作者 王涛 任少君 +2 位作者 司风琪 马利君 王力光 《发电设备》 2021年第2期122-130,共9页
以浆液循环泵运行情况作为工况划分条件,通过提出的灰狼优化(GWO)-BP神经网络(GWO-BP神经网络)算法建立了针对湿法烟气脱硫(WFGD)系统多模态在线优化模型组,分析了机组负荷、入口SO_(2)质量浓度对出口SO2质量浓度变化量的影响,并利用某6... 以浆液循环泵运行情况作为工况划分条件,通过提出的灰狼优化(GWO)-BP神经网络(GWO-BP神经网络)算法建立了针对湿法烟气脱硫(WFGD)系统多模态在线优化模型组,分析了机组负荷、入口SO_(2)质量浓度对出口SO2质量浓度变化量的影响,并利用某660 MW机组切换试验对该模型组性能进行验证。结果表明:随着机组负荷和入口SO_(2)质量浓度增大,切换后出口SO_(2)质量浓度变化量增大,该模型组具有较好的预测精度和泛化能力。 展开更多
关键词 湿法烟气脱硫 浆液循环泵 BP神经网络 gwo算法
下载PDF
基于健康特征筛选与GWO-LSSVM的锂电池健康状态预测
9
作者 马君 万俊杰 《电气技术》 2024年第2期37-44,共8页
锂电池健康状态(SOH)预测是电池管理系统(BMS)最重要的功能之一,准确有效地预测锂电池SOH可有效提升设备利用率,保证系统稳定性。为了提高预测准确度,本文提出一种基于健康特征筛选与灰狼优化算法(GWO)-最小二乘支持向量机(LSSVM)的锂电... 锂电池健康状态(SOH)预测是电池管理系统(BMS)最重要的功能之一,准确有效地预测锂电池SOH可有效提升设备利用率,保证系统稳定性。为了提高预测准确度,本文提出一种基于健康特征筛选与灰狼优化算法(GWO)-最小二乘支持向量机(LSSVM)的锂电池SOH预测方法,首先采用灰色关联分析(GRA)法计算每个健康特征相对于锂电池SOH的灰色关联度,并将灰色关联度进行排序,确定SOH预测的主要健康特征;然后针对LSSVM模型参数需靠人为经验选择的问题,采用寻优性能较好的灰狼优化算法对其进行优化选择并构建GWO-LSSVM模型;最后基于NASA数据集,对模型进行训练和测试,并与其他3种模型的预测结果进行对比,对比结果证明了本文所提方法的有效性。 展开更多
关键词 电池管理系统(BMS) 健康状态(SOH)预测 灰色关联分析(GRA) 灰狼优化算法(gwo)-最小二乘支持向量机(LSSVM)
下载PDF
基于灰狼优化算法的PCNN中药材显微图像分割
10
作者 刘勍 黄金 +2 位作者 张亚亚 赵利民 赵玉祥 《信阳师范学院学报(自然科学版)》 CAS 2024年第1期120-126,共7页
为有效分割中药材显微图像的目标信息,提出了一种基于灰狼优化算法(Gray wolf optimization,GWO)的改进型脉冲耦合神经网络(Pulse coupled neural networks,PCNN)中药材显微图像自动分割方法。首先,从适应处理显微图像的角度出发对传统P... 为有效分割中药材显微图像的目标信息,提出了一种基于灰狼优化算法(Gray wolf optimization,GWO)的改进型脉冲耦合神经网络(Pulse coupled neural networks,PCNN)中药材显微图像自动分割方法。首先,从适应处理显微图像的角度出发对传统PCNN模型进行简化与改进;其次,在训练图像中提取香农熵值作为GWO的适应度函数来自适应调节PCNN关键参数——链接系数β,进而实现图像目标的最优分割;最后,将所提算法与聚类分割法、OTSU法、传统PCNN法进行了实验比较,并用骰子系数、体积重叠误差、相对体积、精确度和交并比等常用医学图像分割评判标准对4种处理方法做了客观评价。实验结果表明,所提方法能够实现图像的自适应分割,较好地保持了图像细节、纹理及边缘等信息,对不同显微图像分割准确度高,改善了图像的分割性能,具有较强的适用性。 展开更多
关键词 中药材(CHM) 显微图像 图像分割 脉冲耦合神经网络(PCNN) 灰狼优化算法(gwo)
下载PDF
基于GWO-BP神经网络的住宅工程造价预测分析
11
作者 霍达 《工程造价管理》 2024年第2期25-31,共7页
为提高住宅工程评估模型预测准确性、稳定性和泛化能力,文章提出一种基于灰狼优化算法的BP神经网络(GWOBPNN)预测模型。采用GWO算法优化BPNN模型网络隐含层权值w和节点偏置b,构建了GWO-BPNN最优预测模型。通过随机测试样本验证GWO-BPNN... 为提高住宅工程评估模型预测准确性、稳定性和泛化能力,文章提出一种基于灰狼优化算法的BP神经网络(GWOBPNN)预测模型。采用GWO算法优化BPNN模型网络隐含层权值w和节点偏置b,构建了GWO-BPNN最优预测模型。通过随机测试样本验证GWO-BPNN模型预测性能,结果表明:GWO-BPNN模型单方工程预测值与样本实际值拟合优度R^(2)达到0.967,单方造价绝对误差值范围[-42.765,18.281],相对误差值范围[-2.42%,0.92%];MAE为14.536元/m^(2),MBE为6.601元/m^(2),GWO-BPNN模型表现出良好的预测精度和稳健性;同时,GWO-BPNN与BPNN模型单方造价预测性能对比分析表明,GWO-BPNN模型预测准确率和预测稳定性表现更优。本研究提出的GWO-BPNN预测模型可以稳定高效地对住宅工程造价进行预测,具有工程应用可行性。 展开更多
关键词 住宅工程 造价预测 灰狼优化算法(gwo) BP神经网络(BPNN)
下载PDF
基于ICEEMDAN-MPE和GWO-SVM的滚动轴承故障诊断方法
12
作者 许浩飞 潘存治 《国防交通工程与技术》 2024年第1期33-37,96,共6页
针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation... 针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation Entropy,MPE)和灰狼算法优化支持向量机(Grey Wolf Optimization Algorithm-Support Vector Machine,GWO-SVM)结合的故障诊断方法。首先将轴承信号进行ICEEMDAN分解,然后选取其中相关性较大的IMF(Intrinsic Mode Function)分量计算多尺度排列熵构成特征集合,最后通过GWO-SVM算法进行故障状态识别。通过滚动轴承数据集和不同算法的对比实验,验证了ICEEMDAN-MPE-GWO-SVM方法的有效性,表明该方法可以准确且快速的诊断滚动轴承的故障情况。 展开更多
关键词 滚动轴承 改进自适应噪声完备集成经验模态分解(ICEEMDAN) 多尺度排列熵(MPE) 支持向量机(SVM) 灰狼算法(gwo) 故障诊断
下载PDF
基于EMD-GWO-SVR组合模型的短期风速预测 被引量:1
13
作者 蔺琳 王万雄 《电子科技》 2023年第5期1-8,共8页
风速预测对风电场进行调度与控制具有重大意义。针对风速序列的随机性与间歇性,文中提出了EMD-GWO-SVR组合预测模型。先对原始序列进行经验模态分解,并应用GWO算法对支持向量回归模型的参数进行寻优。随后将寻优得到的最佳参数代入支持... 风速预测对风电场进行调度与控制具有重大意义。针对风速序列的随机性与间歇性,文中提出了EMD-GWO-SVR组合预测模型。先对原始序列进行经验模态分解,并应用GWO算法对支持向量回归模型的参数进行寻优。随后将寻优得到的最佳参数代入支持向量回归模型,并对分解后的本征模函数及残差项分别进行预测,将得到的各预测结果相加从而对风速进行预测。以甘肃省酒泉市的历史气象数据为例,建立BP神经网络、SVR、PSO-SVR、GWO-SVR、EMD-PSO-SVR和EMD-GWO-SVR6种预测模型,对该地的风速进行预测。仿真结果表明,文中提出的EMD-GWO-SVR模型预测精度相比SVR提高了61.759 8%,且其MAE、MAPE和RMSE等误差指标评价值显著低于其它5种模型。 展开更多
关键词 风速预测 BP神经网络 经验模态分解 粒子群优化算法 gwo算法 参数寻优 支持向量回归 预测精度
下载PDF
基于灰狼优化算法的自抗扰控制在汽包水位中的应用 被引量:1
14
作者 张暄博 魏铭毅 +2 位作者 安风栓 李川 王鹏飞 《工业控制计算机》 2023年第4期36-38,92,共4页
针对余热锅炉汽包水位控制系统具有非线性、大滞后、强干扰、大惯性等特点,采用自抗扰(ADRC)控制器来改善其控制效果,提高汽包水位控制系统的控制精度及鲁棒性。针对控制器参数过多,引入灰狼算法(GWO)对控制器参数进行整定。利用SIMULIN... 针对余热锅炉汽包水位控制系统具有非线性、大滞后、强干扰、大惯性等特点,采用自抗扰(ADRC)控制器来改善其控制效果,提高汽包水位控制系统的控制精度及鲁棒性。针对控制器参数过多,引入灰狼算法(GWO)对控制器参数进行整定。利用SIMULINK构建汽包水位控制系统,用灰狼算法调节ADRC-PI控制器与PID-PI控制器参数,对比不同控制器对汽包水位控制的效果。结果表明:GWO-ADRC-PI控制效果具有超调量小、鲁棒性强和抗干扰能力强等优点。 展开更多
关键词 ADRC控制器 gwo算法 余热锅炉
下载PDF
基于GWO-LSSVM算法的海底管道腐蚀预测模型研究 被引量:5
15
作者 金龙 曾德智 +3 位作者 孟可雨 肖国清 谭四周 张昇 《石油与天然气化工》 CAS CSCD 北大核心 2022年第2期70-76,共7页
目的针对海底管道腐蚀影响因素存在信息叠加与相互耦合、作用机理复杂、腐蚀速率预测难度大的问题,提出一种灰狼优化(GWO)算法优化最小二乘支持向量机(LSSVM)的腐蚀速率预测新模型。方法该模型利用灰狼优化算法对最小二乘支持向量机的... 目的针对海底管道腐蚀影响因素存在信息叠加与相互耦合、作用机理复杂、腐蚀速率预测难度大的问题,提出一种灰狼优化(GWO)算法优化最小二乘支持向量机(LSSVM)的腐蚀速率预测新模型。方法该模型利用灰狼优化算法对最小二乘支持向量机的核参数与惩罚因子进行迭代寻优,减少参数选择的盲目性,提升预测精度,应用该模型对海水挂片腐蚀实验的50组样本进行学习与预测,并与传统最小二乘支持向量机、粒子群优化最小支持向量机进行了预测精度的比较。结果灰狼优化最小二乘支持向量机的平均绝对误差、均方误差、均方根误差均最小,其决定系数更接近于1,说明该模型的预测结果与真实值最接近,算法效率高。结论构建的模型可以用于当前油气工程大数据驱动的腐蚀预测中,其结果可以为海底管道的腐蚀与防护提供决策技术支持。 展开更多
关键词 海水腐蚀 腐蚀预测 灰狼优化算法(gwo) 最小二乘支持向量机(LSSVM)
下载PDF
基于GWO-LSTM模型的道路交通事故量预测
16
作者 孔维麟 李文栋 +2 位作者 杨立柱 张鲁玉 王庆斌 《山东交通学院学报》 CAS 2023年第4期60-67,共8页
为降低道路交通事故率,减少事故损失,采用全局遍历性和收敛性较强的自适应学习策略灰狼优化(grey wolf optimizer,GWO)算法,对长短期记忆(long short term memory,LSTM)神经网络中的初始学习率、隐藏层节点数、正则化系数等参数进行优... 为降低道路交通事故率,减少事故损失,采用全局遍历性和收敛性较强的自适应学习策略灰狼优化(grey wolf optimizer,GWO)算法,对长短期记忆(long short term memory,LSTM)神经网络中的初始学习率、隐藏层节点数、正则化系数等参数进行优化训练,构建GWO-LSTM道路交通事故量预测模型。以2000—2019年美国道路交通致死事故数据为样本数据,分别采用月粒度、周粒度、时粒度划分交通事故数据,对比分析GWO-LSTM模型、自回归移动平均(autoregressive moving average,ARMA)模型、反向传播(back propagation,BP)神经网络和LSTM神经网络的道路交通事故预测结果。结果表明:在3种时间粒度下,GWO-LSTM模型预测结果的平均绝对百分比误差和均方根误差均最小,预测准确度较高,可用于道路交通事故量预测中。 展开更多
关键词 交通事故 LSTM神经网络 gwo算法 时间粒度
下载PDF
基于改进GWO-CV优化的K-调和均值聚类算法 被引量:2
17
作者 张文宇 张茜 +1 位作者 杨媛 刘嘉 《统计与决策》 CSSCI 北大核心 2020年第16期9-13,共5页
为克服传统聚类算法对初始聚类中心敏感且容易陷入局部最优的问题,文章提出一种基于改进的灰狼优化与交叉验证法结合的K-调和均值聚类算法(GWO-CVKHM)。首先将新的非线性收敛因子引入灰狼优化算法,以调整前期广度搜索与后期深度搜索比例... 为克服传统聚类算法对初始聚类中心敏感且容易陷入局部最优的问题,文章提出一种基于改进的灰狼优化与交叉验证法结合的K-调和均值聚类算法(GWO-CVKHM)。首先将新的非线性收敛因子引入灰狼优化算法,以调整前期广度搜索与后期深度搜索比例,同时基于模糊控制权重决策对灰狼种群位置进行更新;其次利用改进灰狼优化算法与交叉验证的思想对初始聚类中心进行寻优;最后基于改进后的聚类算法选取UCI数据库中真实数据集进行聚类。实验结果表明,该算法在求解精度及算法稳定性方面优于对比算法,具有更快的收敛速度与更强的全局搜索能力。 展开更多
关键词 K-调和均值聚类 灰狼优化算法(gwo) 交叉验证法(CV) 全局搜索能力
下载PDF
基于灰狼-鸟群算法的特征权重优化方法
18
作者 严爱军 严晶 《北京工业大学学报》 CAS CSCD 北大核心 2023年第10期1088-1098,共11页
针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;... 针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;其次,将改进后的GWO算法位置更新策略融入BSA的觅食行为中,得到一种新的局部搜索策略;然后,将BSA的警觉行为与飞行行为用作混合算法的全局搜索平衡策略,从而得到一种收敛的灰狼-鸟群算法(grey wolf and bird swarm algorithm, GWBSA),通过GWBSA的迭代寻优可获得各特征的权重值。利用标准测试函数和标准分类数据集进行了对比实验,与遗传算法、蚁狮算法等方法相比,GWBSA具有较快的收敛速度且不易陷入局部最优,可以提高模式分类问题的求解质量。 展开更多
关键词 特征权重 灰狼优化(grey wolf optimizer gwo)算法 鸟群算法(bird swarm algorithm BSA) 混合算法 问题求解 模式分类
下载PDF
基于改进灰狼优化算法的WSN覆盖优化 被引量:1
19
作者 高敏 刘海荣 朱燕飞 《上海师范大学学报(自然科学版)》 2023年第2期256-263,共8页
针对无线传感器网络(WSN)节点在随机部署时,存在分布不均匀的情况,从而导致覆盖率较低的问题,提出了一种改进的灰狼优化(GWO)算法.首先利用Tent混沌映射初始化种群,增加种群的多样性;其次利用改进的非线性收敛因子,平衡算法的全局搜索... 针对无线传感器网络(WSN)节点在随机部署时,存在分布不均匀的情况,从而导致覆盖率较低的问题,提出了一种改进的灰狼优化(GWO)算法.首先利用Tent混沌映射初始化种群,增加种群的多样性;其次利用改进的非线性收敛因子,平衡算法的全局搜索能力与局部搜索精度;最后将差分进化(DE)算法的变异、交叉的理念融入GWO算法,避免算法陷入局部最优,并提高算法的收敛速度.基本测试函数仿真结果验证了改进算法的有效性,随后将其应用于WSN覆盖优化问题,可以使节点的分布更加均匀,显著提高覆盖率,进而改善网络性能. 展开更多
关键词 无线传感网络(WSN) 网络覆盖 灰狼优化(gwo)算法 非线性收敛因子 差分进化(DE)算法
下载PDF
基于KPCA-GWO-SVM的矿井突水水源识别
20
作者 华星月 邵良杉 《煤矿安全》 CAS 北大核心 2023年第2期195-200,共6页
为提高矿井突水水源识别的精准度,提出1种基于KPCA-GWO-SVM的矿井突水水源识别模型;该算法利用核主成分分析(KPCA)进行特征降维,加快水源识别速度,通过灰狼优化算法(GWO)搜寻支持向量机(SVM)的最优参数,使水源识别精准度更高;以赵各庄... 为提高矿井突水水源识别的精准度,提出1种基于KPCA-GWO-SVM的矿井突水水源识别模型;该算法利用核主成分分析(KPCA)进行特征降维,加快水源识别速度,通过灰狼优化算法(GWO)搜寻支持向量机(SVM)的最优参数,使水源识别精准度更高;以赵各庄矿为研究对象,分析各含水层主要水化学类型,选取6种离子指标,经KPCA提取3个主成分,随机选取总样本量70%为训练集(共47组),30%作为预测集(共20组),构建KPCA-GWO-SVM模型并与KPCA-PSO-SVM、KPCA-WOA-SVM和KPCA-SVM模型对比。结果表明:KPCA-GWO-SVM的水源预测结果与实际结果一致,比未经KPCA处理模型的预测准确率高10%且寻优速度更快;与其他模型相比准确率最高,具有优越性。 展开更多
关键词 矿井突水 水源识别 核主成分分析(KPCA) 灰狼优化算法(gwo) 支持向量机(SVM)
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部