期刊文献+
共找到10,568篇文章
< 1 2 250 >
每页显示 20 50 100
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:1
1
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 C-均值 鹈鹕优化算法 点云简化 信息熵
下载PDF
局部线性下的函数型主成分聚类算法 被引量:1
2
作者 陈海龙 胡晓雪 《统计与决策》 北大核心 2024年第5期39-44,共6页
函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成... 函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。 展开更多
关键词 函数型主成分 局部线性嵌入算法 EM算法 GMM模型
下载PDF
谱聚类和Apriori算法在建筑坍塌事故致因组合分析中的应用 被引量:1
3
作者 李珏 蒋敏 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期617-625,共9页
建筑坍塌事故是人员伤亡和经济损失较大的事故类型之一。为探究建筑坍塌事故不同致因之间的关联和相互依存关系,首先,选取国内2015—2020年231份建筑坍塌事故报告作为研究对象,借助R语言平台进行文本挖掘,得到43个致因。其次,运用Pytho... 建筑坍塌事故是人员伤亡和经济损失较大的事故类型之一。为探究建筑坍塌事故不同致因之间的关联和相互依存关系,首先,选取国内2015—2020年231份建筑坍塌事故报告作为研究对象,借助R语言平台进行文本挖掘,得到43个致因。其次,运用Python进行谱聚类,根据致因之间的关联强度对其进行聚类。最后,利用关联规则挖掘Apriori算法确定建筑坍塌事故致因之间的关键关联组合。结果表明,43个事故致因可分为5类,在每一个簇类中确定了最关键的致因组合,并提出了针对性的预防措施,为坍塌事故的预防和控制提供一种新的思路。 展开更多
关键词 安全社会工程 建筑施工 坍塌事故 文本挖掘 APRIORI算法
下载PDF
跳跃跟踪SSA交叉迭代AP聚类算法
4
作者 黄鹤 李文龙 +3 位作者 杨澜 王会峰 高涛 陈婷 《电子学报》 EI CAS CSCD 北大核心 2024年第3期977-990,共14页
针对传统近邻传播聚类算法以数据点对之间的相似度作为输入度量,由于需要预设偏向参数p和阻尼系数λ,算法精度无法精确控制的问题,提出了一种跳跃跟踪麻雀搜索算法优化的交叉迭代近邻传播聚类方法.首先,针对麻雀搜索算法中发现者和加入... 针对传统近邻传播聚类算法以数据点对之间的相似度作为输入度量,由于需要预设偏向参数p和阻尼系数λ,算法精度无法精确控制的问题,提出了一种跳跃跟踪麻雀搜索算法优化的交叉迭代近邻传播聚类方法.首先,针对麻雀搜索算法中发现者和加入者位置更新不足的问题,设计了一种跳跃跟踪优化策略,通过考虑偏好阻尼因子的跳跃策略设计大步长更新发现者,增加麻雀搜索算法的全局勘探能力和寻优速度,加入者设计动态小步长跟踪领头雀更新位置,同时,利用自适应种群划分机制更新发现者和加入者的比重,增加算法的后期局部开发能力和寻优速度;其次,设计基于扰动因子的Tent映射,在此基础上增加3个参数,使映射分布范围增大,并避免了陷入小周期点和不稳周期点;最后,引入轮廓系数作为评价函数,跳跃跟踪麻雀搜索算法自动寻找较优的p和λ,代替手动输入参数,并融合基于扰动因子的Tent映射优化近邻传播算法,交叉迭代确定最优簇数.使用多种算法聚类University of California Irvine数据集的10种公共数据集,仿真结果表明,本文提出的聚类算法与经典近邻传播算法、基于差分改进的仿射传播聚类算法、基于麻雀搜索算法优化的近邻传播聚类算法和进化近邻传播算法相比具有更优的搜索效率以及聚类精度.对国家信息数据进行了聚类分析,提出的方法更加准确有效合理,具有较好的应用价值. 展开更多
关键词 近邻传播 改进Tent映射 改进麻雀搜索算法 轮廓系数 数据集
下载PDF
基于机器学习的茶树DNA聚类算法
5
作者 杨小平 倪萍 +4 位作者 诸葛天秋 罗跃新 郭春雨 庞月兰 吴雨婷 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第2期386-399,共14页
为了研究茶树基因序列的聚类问题,设计一种基于累计方差贡献率进行改进的核主成分分析(KPCA)与k均值(k-means)++聚类算法相结合的降维聚类算法(KPCA-k-means++)。将基因库数据集筛选分组后,利用k-mers算法提取基因数据的数据特征,根据... 为了研究茶树基因序列的聚类问题,设计一种基于累计方差贡献率进行改进的核主成分分析(KPCA)与k均值(k-means)++聚类算法相结合的降维聚类算法(KPCA-k-means++)。将基因库数据集筛选分组后,利用k-mers算法提取基因数据的数据特征,根据累计方差贡献率的占比大于85%的标准确定降维主元个数对KPCA进行降维改进并采用k-means++算法对降维后数据聚类,通过CH(Calinski-Harabaze Index)指标和响应时间分析聚类结果。结果表明:在单独聚类、KPCA聚类、改进PCA聚类、改进KPCA聚类4种处理方式中,改进KPCA-k-means++算法在不同处理方式和不同样本数的对比下,CH指标均为最高,与未改进时相比平均高出33%。在响应时间方面,改进KPCA-k-means++算法与同样改进PCA-k-means++算法在不同聚类数和样本数的对比下响应时间均较短。改进KPCA-k-means++算法能够保证对于茶树的基因序列的聚类准确率和聚类速度,表现出极好的聚类稳定性。 展开更多
关键词 核主成分分析 累计方差贡献率 K均值算法 基因
下载PDF
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:1
6
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 K-MEANS 特征空间增强 mixup算法
下载PDF
改进的采样算法与无监督聚类相结合的软件缺陷预测模型
7
作者 石海鹤 周世文 +1 位作者 钟林辉 肖正兴 《江西师范大学学报(自然科学版)》 CAS 北大核心 2024年第3期301-310,共10页
该文首先在自适应综合过采样算法ADASYN(adaptive synthetic sampling)的基础上,考虑少数类内部不同密度簇之间的连接性问题,将与采样点距离为中等的点纳入新样本生成范围,改进得到T-ADASYN过采样优化算法,有效地增加了少数类内部不同... 该文首先在自适应综合过采样算法ADASYN(adaptive synthetic sampling)的基础上,考虑少数类内部不同密度簇之间的连接性问题,将与采样点距离为中等的点纳入新样本生成范围,改进得到T-ADASYN过采样优化算法,有效地增加了少数类内部不同密度簇的连接性,生成了分布更为均衡的数据集.然后使用基于连接的spectral clustering算法进行聚类预测操作,将过采样算法和无监督聚类相结合,提出一种新型实用的软件缺陷预测模型TA-SC(T-ADASYN+spectral clustering).以F-score为评价指标,spectral clustering为聚类模型进行验证.实验结果表明:改进的T-ADASYN过采样算法在公开的PROMISE数据集和NASA数据集上比常用的过采样算法均有6%的性能提升,且TA-SC模型在PROMISE和NASA 2个数据集上比常用聚类算法分别有3%和2%的性能提升. 展开更多
关键词 软件缺陷预测 别不平衡 过采样算法 算法 无监督学习
下载PDF
用聚类与插值改进深度学习算法实现变工况轴承故障诊断
8
作者 李俊卿 耿继亚 +2 位作者 胡晓东 张承志 何玉灵 《电力科学与工程》 2024年第6期60-68,共9页
针对基于深度学习轴承故障诊断模型由于工况因素导致诊断效果不佳的问题,提出了一种用聚类与插值(Clustering and interpolation,CAI)改进深度学习算法实现变工况轴承故障诊断的方法。首先,采用有限元法仿真多工况、多故障类型的轴承振... 针对基于深度学习轴承故障诊断模型由于工况因素导致诊断效果不佳的问题,提出了一种用聚类与插值(Clustering and interpolation,CAI)改进深度学习算法实现变工况轴承故障诊断的方法。首先,采用有限元法仿真多工况、多故障类型的轴承振动信号数据,获取足够样本;然后,完成宽卷积核深度卷积神经网络(Deepconvolutionalneuralnetworks with widekernel,WDCNN)模型构建,并利用任一工况下的数据完成模型训练;最后,利用CAI算法统一其余工况数据的转速信息,调用WDCNN模型完成对其余工况样本的故障诊断。结果显示,WDCNN模型对训练数据所属工况故障诊断准确率达99.9%,对经过CAI算法处理其他工况数据故障诊断识别率分别为98.7%、99.2%,是一种简单、准确有效、泛化能力强的故障诊断方法。 展开更多
关键词 深度学习 与插值算法 故障诊断 轴承 有限元分析
下载PDF
基于改进K-means聚类和遗传算法的混合算法求解异构车辆路径问题
9
作者 吴麟麟 吕一鸣 +1 位作者 何美玲 韩珣 《物流技术》 2024年第7期48-62,共15页
由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时... 由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时间窗惩罚成本的混合整数规划模型。同时,提出了一种基于改进K-means聚类和遗传算法的混合算法对模型进行求解。实验仿真先求解不考虑时间窗的问题初步证明混合算法的有效性,再在带时间窗的问题中求解不同规模算例的单一及异构车型结果,以证明异构车型配送更优。最后,对该混合算法的求解结果与其他混合算法的求解结果进行对比分析,证明了混合算法的优越性。研究结果表明:该混合算法求解的异构车型结果优于单一车型,并且比其他混合算法求解的异构车型结果更优,异构车辆配送使用的配送车辆数更少,总成本也更低,该混合算法具有更好的效率和性能。 展开更多
关键词 异构车辆路径问题 改进K-means算法 遗传算法 混合算法
下载PDF
基于航迹数据的改进DBSCAN聚类算法研究
10
作者 申正义 李平 +2 位作者 王洪林 赵迪 郭文琪 《空天预警研究学报》 CSCD 2024年第2期128-131,共4页
为研究模拟训练航迹数据聚类,针对基于密度的噪声应用空间聚类(DBSCAN)算法参数选取不精准、聚类准确度不高的问题,提出一种改进的DBSCAN聚类算法.首先,通过KNN算法计算邻域半径并得到用于DBSCAN聚类的初始化核心数据对象,实现粗聚类;其... 为研究模拟训练航迹数据聚类,针对基于密度的噪声应用空间聚类(DBSCAN)算法参数选取不精准、聚类准确度不高的问题,提出一种改进的DBSCAN聚类算法.首先,通过KNN算法计算邻域半径并得到用于DBSCAN聚类的初始化核心数据对象,实现粗聚类;其次,根据数据对象的特点,加入航向特征进行二次聚类,既解决了DBSCAN算法随机初始化核心点和参数选取难的问题,又加入能够反映数据方向的特征;最后,进行了仿真实验.实验结果表明,改进DBSCAN算法比传统DBSCAN算法具有更好的聚类效果. 展开更多
关键词 模拟训练 DBSCAN算法 二次 自适应参数选取 航迹数据
下载PDF
基于K均值聚类算法和LSTM神经网络的管道腐蚀阶段预测方法
11
作者 王新颖 刘岚 +2 位作者 陈海群 胡磊磊 谢逢豪 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期84-89,共6页
针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波... 针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波形为出发点,对模型进行参数优化,最后进行管道腐蚀阶段预测,并根据评价指标对模型进行评价。研究表明:对LSTM神经网络模型适当增加隐藏层,可以使得模型更加稳定,鲁棒性更好;与现有故障诊断模型相比,LSTM神经网络模型的精度更高。 展开更多
关键词 声发射无损检测 腐蚀阶段预测 K-MEANS算法 长短期记忆(LSTM)神经网络 鲁棒性
下载PDF
一种基于粗糙熵的改进K-modes聚类算法
12
作者 刘财辉 曾雄 谢德华 《南京理工大学学报》 CAS CSCD 北大核心 2024年第3期335-341,共7页
K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分... K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分考虑每个属性对聚类结果的影响。针对上述问题,该文将粗糙熵引入K-modes算法。首先利用粗糙集属性约简算法消除冗余属性,确定各属性的重要程度;然后利用粗糙熵确定每个属性的权重,从而定义新的类内距离。将该文所提算法与传统的K-modes聚类算法分别在4组公开数据集上进行对比试验。试验结果表明,该文所提算法聚类准确率比传统的K-modes聚类算法更高。 展开更多
关键词 K-modes算法 粗糙集 粗糙熵 属性约简 权重
下载PDF
基于空间插值的不规则海洋地质样品测试分析数据聚类算法研究
13
作者 邵长高 严镔 陈秋 《热带海洋学报》 CAS CSCD 北大核心 2024年第2期166-172,共7页
海洋地质调查中获取大量海洋沉积物柱状样样品测试分析数据,样品测试分析目的不同导致柱状样数据采样深度不同,由此造成地质取样数据在三维空间上呈现不规则散点状分布。传统聚类算法无法在三维空间上对此类不规则散点数据进行聚类分析... 海洋地质调查中获取大量海洋沉积物柱状样样品测试分析数据,样品测试分析目的不同导致柱状样数据采样深度不同,由此造成地质取样数据在三维空间上呈现不规则散点状分布。传统聚类算法无法在三维空间上对此类不规则散点数据进行聚类分析。对此,文章设计了一种基于空间插值的不规则地质样品测试分析数据聚类算法,有效地将三维样品测试分析散点数据降为二维数据后进行聚类分析,本算法较好地解决了地质体中试验测试数据的不均衡性问题,为海洋地质大数据分析提供了基础技术方法。 展开更多
关键词 地质取样 实验测试 算法 空间插值 三维
下载PDF
基于蚁群算法的三支k-means聚类算法
14
作者 朱金 徐天杰 王平心 《江苏科技大学学报(自然科学版)》 CAS 2024年第3期63-69,共7页
在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法... 在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法中随机概率选择策略和信息素的正负反馈机制,动态调整权重的方法,对三支k-means聚类算法进行优化.在UCI数据集上实验证明,该方法对聚类结果的性能指标有所提高. 展开更多
关键词 三支k-means K-MEANS算法 中心 蚁群算法
下载PDF
基于聚类-Floyd-遗传算法的“车辆+无人机”城市物流配送路径优化
15
作者 李楠 辛春阳 《科学技术与工程》 北大核心 2024年第21期9186-9193,共8页
为了提高城市环境下物流配送效率,以配送时间和配送成本为优化目标,建立“车辆+无人机”路径优化数学模型,提出一种基于聚类-Floyd-遗传算法的三阶算法。实验结果表明,该算法通过多阶数据处理,可有效降低运算量,克服了遗传算法收敛速度... 为了提高城市环境下物流配送效率,以配送时间和配送成本为优化目标,建立“车辆+无人机”路径优化数学模型,提出一种基于聚类-Floyd-遗传算法的三阶算法。实验结果表明,该算法通过多阶数据处理,可有效降低运算量,克服了遗传算法收敛速度慢、易陷入局部最优的问题。对无人机容量进行灵敏度分析表明,无人机的配送能力随载重量增大而显著提升,载重量和最大航程同步提升能更好地发挥无人机的配送能力。和单纯车辆配送的方式相比,“车辆+无人机”配送模式总配送成本降低36.1%,总配送时间减少34.5%。证明了该算法在城市物流配送方面具有一定实用价值。 展开更多
关键词 车辆+无人机 算法 FLOYD算法 遗传算法 路径优化
下载PDF
融合密度和划分的文本聚类算法
16
作者 刘龙 刘新 +1 位作者 蔡林杰 唐朝 《计算机与数字工程》 2024年第1期178-183,共6页
文档聚类是聚类的经典应用,它是将相似的文档归为同一类,可以有效地组织、摘要和导航文本信息,也可以用来提高分类效果。论文使用BERT模型处理文档向量化,将文档表示为高维向量。传统的密度聚类算法不适用于高维数据集,划分聚类算法中... 文档聚类是聚类的经典应用,它是将相似的文档归为同一类,可以有效地组织、摘要和导航文本信息,也可以用来提高分类效果。论文使用BERT模型处理文档向量化,将文档表示为高维向量。传统的密度聚类算法不适用于高维数据集,划分聚类算法中的K-均值算法可以有效地聚类文档,但是算法的性能非常依赖于初始中心点的选择。论文提出了一种新的融合密度和划分的文本聚类算法。首先,通过密度选择适当的聚类中心点集合,然后使用最远距离的想法逐渐选择初始类中心点,最后使用划分方法对数据集进行聚类。实验表明,该算法的聚类效果稳定,聚类效果良好。 展开更多
关键词 文档 BERT K-均值算法 密度 最远距离
下载PDF
启发式k-means聚类算法的改进研究
17
作者 殷丽凤 栗庆杰 《大连交通大学学报》 CAS 2024年第2期115-119,共5页
启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结... 启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结果的误差平方和较大并且轮廓系数偏小。针对这一问题,提出了CHk-means算法,该算法引入仔细播种方法,克服了启发式k-means算法随机选择初始聚类中心带来的局部最优解问题;该算法引入局部异常因子LOF算法对离群点进行检测,降低了离群点数据对聚类结果的影响。在多个数据集上对3种算法进行对比试验,结果表明CHk-means算法可有效降低聚类结果的误差平方和,增强聚类的轮廓系数,使聚类质量得到明显改善。 展开更多
关键词 算法 K-MEANS 启发式算法 仔细播种 局部异常因子 离群点
下载PDF
城市休闲产业聚类模式APM算法模型开发与校验
18
作者 刘逸 吴雪涵 许汀汀 《旅游学刊》 北大核心 2024年第4期40-52,共13页
城市休闲相关产业的高质量发展对当前我国城市消费升级以及人居环境质量提升具有重要现实意义。但是,现有研究未能精准地捕捉海量广域分布的城市休闲产业的基本空间分布规律与结构,而已有的空间聚类算法较多适用于城市用地分析,未能很... 城市休闲相关产业的高质量发展对当前我国城市消费升级以及人居环境质量提升具有重要现实意义。但是,现有研究未能精准地捕捉海量广域分布的城市休闲产业的基本空间分布规律与结构,而已有的空间聚类算法较多适用于城市用地分析,未能很好地适用于离散分布的城市休闲产业研究。为此,文章基于空间兴趣点数据,开发距离通达值及空间集群中心点等算法,构建城市休闲旅游产业聚类模式空间算法模型(APM)。在以广州为例的研究中,APM模型捕捉出3170个以500 m步行生活圈为范围的城市休闲产业集群,校验了APM模型的科学性与应用价值。整体上,APM算法可以较好地捕捉城市休闲业态集群的空间结构,清晰识别城市休闲产业空间冷、热点分布的基本结构,由其捕捉行程的聚类边界与实际道路和建筑走向、水系边界、区域范围等重合度高,聚类集群符合实际情况,具备可信度与有效性。该研究是休闲产业集聚机制研究的一次方法创新,在算法精度、实际应用、可视化效率上均做出了创新性推进。与Fishnet方法相比,可以更科学精准地识别城市内部多个休闲消费商圈的边界,实现了高效率的城市休闲产业集群捕捉;与同位模型相比,可以呈现多类别的城市休闲业态结构,突破了现有研究只能捕捉两类业态组团的局限。 展开更多
关键词 城市旅游休闲 产业集模式 空间数据挖掘 算法 POI 广州市
下载PDF
融合聚类算法与改进哈里斯鹰算法的建筑机器人任务分配方法
19
作者 刘占省 杨煜垚 史国梁 《建筑结构》 北大核心 2024年第20期89-97,42,共10页
建筑机器人技术处于起步阶段,针对建筑机器人多机任务分配问题的相关研究严重不足。因此,对该问题进行分析,将其转化为多旅行商问题进行数学建模,并提出了融合改进哈里斯鹰算法与聚类算法的建筑机器人多机任务分配方法进行求解。首先根... 建筑机器人技术处于起步阶段,针对建筑机器人多机任务分配问题的相关研究严重不足。因此,对该问题进行分析,将其转化为多旅行商问题进行数学建模,并提出了融合改进哈里斯鹰算法与聚类算法的建筑机器人多机任务分配方法进行求解。首先根据建造任务的空间特征和建筑机器人数量利用聚类算法进行任务聚类;针对哈里斯鹰算法参数敏感与易陷入局部最优的缺点进行基于Logistic混沌映射的改进形成改进哈里斯鹰算法,根据建筑机器人的移动方式构造目标函数并在聚类的基础上进行优化求解,最终确定每个建筑机器人的任务集合与任务执行顺序。为验证该方法的有效性,利用随机生成的3*15、5*40、8*70共3组不同规模的建筑机器人*建造任务数据集进行仿真模拟,并将该方法与未融合聚类算法的GA和IHHO任务分配效果进行对比分析。结果表明,聚类能够有效解决建筑机器人任务分配问题,能够有效降低任务集合之间的空间叠加、增强优化算法的迭代收敛性能;基于Logistic混沌映射改进的算法在迭代开始与收敛时的适应度值更佳;随着问题规模的增大,融合改进哈里斯鹰与聚类算法的建筑机器人任务分配方法效果更显著,说明其更适用于解决大规模复杂的实际问题。 展开更多
关键词 建筑机器人 任务分配 任务 哈里斯鹰算法
下载PDF
基于凝聚层次聚类算法的ATT&CK模型改进
20
作者 徐明迪 崔峰 《计算机与数字工程》 2024年第1期201-205,239,共6页
在应用ATT&CK模型(网络攻击模型)进行网络安全威胁分析的过程中,ATT&CK模型提供的技术集合过于复杂。针对ATT&CK模型应用复杂的问题,论文对模型的技术集进行聚类简化研究,提出了基于聚类算法的模型改进方法,首先对ATT&C... 在应用ATT&CK模型(网络攻击模型)进行网络安全威胁分析的过程中,ATT&CK模型提供的技术集合过于复杂。针对ATT&CK模型应用复杂的问题,论文对模型的技术集进行聚类简化研究,提出了基于聚类算法的模型改进方法,首先对ATT&CK模型的技术集合进行量化和聚类趋势评估,然后对量化的数据应用凝聚层次聚类算法得到简化的聚类结果,最后通过实验验证模型改进有效性。 展开更多
关键词 网络攻击模型 ATT&CK 算法 层次
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部