针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提...针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。展开更多
当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究...当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究二者之间的关系,构建灰狼优化算法-支持向量回归机(Grey Wolf Optimization and Support Vactor Regression,GWO-SVR)组合模型,收集2008—2020年每个月的建筑安全事故数据及死亡人数数据集,发现二者之间成正向相关关系,以建筑安全事故数为特征对建筑死亡人数进行预测,精度达到95%以上,对建筑安全资源与人力投入有较大参考价值,有助于提升建筑安全管理水平。展开更多
基金supported by National Natural Science Foundation of China(No.52067013)Natural Science Foundation of Gansu Province(No.21JR7RA280)。
文摘针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。
文摘当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究二者之间的关系,构建灰狼优化算法-支持向量回归机(Grey Wolf Optimization and Support Vactor Regression,GWO-SVR)组合模型,收集2008—2020年每个月的建筑安全事故数据及死亡人数数据集,发现二者之间成正向相关关系,以建筑安全事故数为特征对建筑死亡人数进行预测,精度达到95%以上,对建筑安全资源与人力投入有较大参考价值,有助于提升建筑安全管理水平。