To explore the role of the Chk2 protein expression and DNA double strand breaks (DSBs) repair in low dose hyper-radiosensitivity (HRS)/increased radioresistance (IRR) of non-small cell lung cancer,A549 cells were subj...To explore the role of the Chk2 protein expression and DNA double strand breaks (DSBs) repair in low dose hyper-radiosensitivity (HRS)/increased radioresistance (IRR) of non-small cell lung cancer,A549 cells were subjected to irradiation at the dosage ranging from 0.05-2 Gy.Clonogenic survival was measured by using fluorescence-activated cell sorting (FACS) plating technique.Percentage of cells in M-phase after low doses of X-irradiation was evaluated by phospho-histone H3-FITC/PI and Western blotting was used to detect protein expression of Chk2 and phospo-Chk2.DNA DSBs repair efficiency was also measured by induction and persistence of γ-H2AX.The results showed that the killing ability of irradiation with A549 cells increased at low conditioning dose below 0.3 Gy.Within the dose of 0.3 to 0.5 Gy,A549 cells showed a certain extent of radiation resistance.And when the dose was more than 0.5 Gy,survival fraction exhibited a negative correlation with the dosage.There was no difference between the 0.1 or 0.2 Gy dosage groups and the un-irradiated group in terms of the percentage of cells in M phase.But in the high dosage group (0.3-1.0 Gy),the percentage of cells in M phase was decreased markedly.In addition,the percentage of cells in M phase began to decrease two hours after irradiation.One hour after irradiation,there was no conspicuous activation of Chk2 kinase in 0.1 or 0.2 Gy group,but when the irradiation dose reached 0.3 Gy or higher,Chk2 kinase started to be activated and the activation level showed no significant difference among high dosage groups (0.4,0.5,1.0 Gy).Within 1 to 6 h,the DNA DSBs repair efficiency was decreased at 0.2 Gy but increased at 0.5 Gy and 1.0 Gy,which was in line with Chk2 activation.We are led to conclude that the mechanism of HRS/IRR in A549 cell line was probably due to early G2/M checkpoint arrest and enhanced DNA DSBs repair.In this regard,Chk2 activation plays a key role in G2/M checkpoint activation.展开更多
Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both h...Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both human and fission yeast (Schizosaccharomyces pombe) cells, the activity of Cdc2 is regulated in part by the phosphorylation status of tyrosine 15 (Tyr15) on Cdc2, which is phosphorylated by Wee1 kinase during late G2 and is rapidly dephosphorylated by the Cdc25 tyrosine phosphatase to trigger entry into mitosis. These Cdc2 regulators are the downstream targets of two well- characterized G2/M checkpoint pathways which prevent cells from entering mitosis when cellular DNA is damaged or when DNA replication is inhibited. Increasing evidence suggests that Cdc2 is also commonly targeted by viral proteins, which modulate host cell cycle machinery to benefit viral survival or replication. In this review, we describe the effect of viral protein R (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) on cell cycle G2/M regulation. Based on our current knowledge about this viral effect, we hypothesize that Vpr induces cell cycle G2 arrest through a mechanism that is to some extent different from the classic G2/M checkpoints. One the unique features distinguishing Vpr-induced G2 arrest from the classic checkpoints is the role of phosphatase 2A (PP2A) in Vpr-induced G2 arrest. Interestingly, PP2A is targeted by a number of other viral proteins including SV40 small T antigen, polyomavirus T antigen, HTLV Tax and adenovirus E4orf4. Thus an in-depth understanding of the molecular mechanisms underlying Vpr-induced G2 arrest will provide additional insights into the basic biology of cell cycle G2/M regulation and into the biological significance of this effect during host-pathogen interactions.展开更多
PLK1(polo like kinase)是一类广泛存在于真核细胞中的丝/苏氨酸激酶,其结构及功能均十分保守。研究表明,plk1在启动、维持及完成有丝分裂中扮演重要角色,plk1磷酸化多种下游底物而实现其功能。已发现plk1基因在多种恶性肿瘤中存在过表...PLK1(polo like kinase)是一类广泛存在于真核细胞中的丝/苏氨酸激酶,其结构及功能均十分保守。研究表明,plk1在启动、维持及完成有丝分裂中扮演重要角色,plk1磷酸化多种下游底物而实现其功能。已发现plk1基因在多种恶性肿瘤中存在过表达并与某些肿瘤的生物学行为及预后相关,有望成为恶性肿瘤的又一新的标记物,阻断plk1表达可导致体外肿瘤细胞分裂停滞及凋亡。展开更多
基金supported by a grant from a Key ScientificResearch Program of Hubei Provincial Authorities (No.JX2A11)
文摘To explore the role of the Chk2 protein expression and DNA double strand breaks (DSBs) repair in low dose hyper-radiosensitivity (HRS)/increased radioresistance (IRR) of non-small cell lung cancer,A549 cells were subjected to irradiation at the dosage ranging from 0.05-2 Gy.Clonogenic survival was measured by using fluorescence-activated cell sorting (FACS) plating technique.Percentage of cells in M-phase after low doses of X-irradiation was evaluated by phospho-histone H3-FITC/PI and Western blotting was used to detect protein expression of Chk2 and phospo-Chk2.DNA DSBs repair efficiency was also measured by induction and persistence of γ-H2AX.The results showed that the killing ability of irradiation with A549 cells increased at low conditioning dose below 0.3 Gy.Within the dose of 0.3 to 0.5 Gy,A549 cells showed a certain extent of radiation resistance.And when the dose was more than 0.5 Gy,survival fraction exhibited a negative correlation with the dosage.There was no difference between the 0.1 or 0.2 Gy dosage groups and the un-irradiated group in terms of the percentage of cells in M phase.But in the high dosage group (0.3-1.0 Gy),the percentage of cells in M phase was decreased markedly.In addition,the percentage of cells in M phase began to decrease two hours after irradiation.One hour after irradiation,there was no conspicuous activation of Chk2 kinase in 0.1 or 0.2 Gy group,but when the irradiation dose reached 0.3 Gy or higher,Chk2 kinase started to be activated and the activation level showed no significant difference among high dosage groups (0.4,0.5,1.0 Gy).Within 1 to 6 h,the DNA DSBs repair efficiency was decreased at 0.2 Gy but increased at 0.5 Gy and 1.0 Gy,which was in line with Chk2 activation.We are led to conclude that the mechanism of HRS/IRR in A549 cell line was probably due to early G2/M checkpoint arrest and enhanced DNA DSBs repair.In this regard,Chk2 activation plays a key role in G2/M checkpoint activation.
基金supported in part by grants from the National Institute of Health GM89630 and AI63080an endowed Research Scholar Chair by the Medical Research Institute Councilby an internal grant of the University of Maryland Medical Center(RYZ).
文摘Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both human and fission yeast (Schizosaccharomyces pombe) cells, the activity of Cdc2 is regulated in part by the phosphorylation status of tyrosine 15 (Tyr15) on Cdc2, which is phosphorylated by Wee1 kinase during late G2 and is rapidly dephosphorylated by the Cdc25 tyrosine phosphatase to trigger entry into mitosis. These Cdc2 regulators are the downstream targets of two well- characterized G2/M checkpoint pathways which prevent cells from entering mitosis when cellular DNA is damaged or when DNA replication is inhibited. Increasing evidence suggests that Cdc2 is also commonly targeted by viral proteins, which modulate host cell cycle machinery to benefit viral survival or replication. In this review, we describe the effect of viral protein R (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) on cell cycle G2/M regulation. Based on our current knowledge about this viral effect, we hypothesize that Vpr induces cell cycle G2 arrest through a mechanism that is to some extent different from the classic G2/M checkpoints. One the unique features distinguishing Vpr-induced G2 arrest from the classic checkpoints is the role of phosphatase 2A (PP2A) in Vpr-induced G2 arrest. Interestingly, PP2A is targeted by a number of other viral proteins including SV40 small T antigen, polyomavirus T antigen, HTLV Tax and adenovirus E4orf4. Thus an in-depth understanding of the molecular mechanisms underlying Vpr-induced G2 arrest will provide additional insights into the basic biology of cell cycle G2/M regulation and into the biological significance of this effect during host-pathogen interactions.
文摘PLK1(polo like kinase)是一类广泛存在于真核细胞中的丝/苏氨酸激酶,其结构及功能均十分保守。研究表明,plk1在启动、维持及完成有丝分裂中扮演重要角色,plk1磷酸化多种下游底物而实现其功能。已发现plk1基因在多种恶性肿瘤中存在过表达并与某些肿瘤的生物学行为及预后相关,有望成为恶性肿瘤的又一新的标记物,阻断plk1表达可导致体外肿瘤细胞分裂停滞及凋亡。