Due to the wide application of UV-A(320 nm–400 nm)and UV-C(200 nm–280 nm)photodetectors,dual-wavelength(UV-A/UV-C)photodetectors are promising for future markets.A dual-wavelength UV photodetector based on vertical(...Due to the wide application of UV-A(320 nm–400 nm)and UV-C(200 nm–280 nm)photodetectors,dual-wavelength(UV-A/UV-C)photodetectors are promising for future markets.A dual-wavelength UV photodetector based on vertical(Al,Ga)N nanowires and graphene has been demonstrated successfully,in which graphene is used as a transparent electrode.Both UV-A and UV-C responses can be clearly detected by the device,and the rejection ratio(R254 nm/R450 nm)exceeds35 times at an applied bias of-2 V.The short response time of the device is less than 20 ms.Furthermore,the underlying mechanism of double ultraviolet responses has also been analyzed systematically.The dual-wavelength detections could mainly result from the appropriate ratio of the thicknesses and the enough energy band difference of(Al,Ga)N and Ga N sections.展开更多
The rapid development of artificial intelligence poses an urgent need for low-energy-consumption and small-sized artificial photonic synapses.Here,it is pretty novel to demonstrate a light-stimulated synaptic device b...The rapid development of artificial intelligence poses an urgent need for low-energy-consumption and small-sized artificial photonic synapses.Here,it is pretty novel to demonstrate a light-stimulated synaptic device based on a single(Al,Ga)N nanowire successfully.Thanks to the presence of vacancy defects in the single nanowire,the artificial synaptic device can simulate multiple functions of biological synapses under stimulation of both 310 and 365 nm light photons,including paired-pulse facilitation,spike timing dependent plasticity,and memory learning capabilities.The energy consumption of artificial synaptic device can be reduced as little as 5.58×10^(-13) J,which is close to that of the biological synapse in human brain.Furthermore,the synaptic device is demonstrated to have the high stability for both long-time stimulation and long-time storage.Based on the experimental conductance of long-term potentiation and long-term depression,the simulated three-layer neural network can achieve a high recognition rate of 92%after only 10 training epochs.With a brain-like behavior,the single-nanowire-based synaptic devices can promote the development of visual neuromorphic computing technology and artificial intelligence systems requiring ultralow energy consumption.展开更多
基金the National Key Research and Development Program of China(Grant No.2018YFB0406602)Natural Science Foundation of Jiangsu Province,China(Grant No.BK20180252)+6 种基金Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-JSC034)the National Natural Science Foundation of China(Grant Nos.61804163,61875224,and 61827823)the Key Research and Development Program of Jiangsu Province,China(Grant No.BE2018005)Natural Science Foundation of Jiangxi Province,China(Grant No.20192BBEL50033)Research Program of Scientific Instrument,Equipment of CAS(Grant No.YJKYYQ20200073)SINANO(Grant Nos.Y8AAQ21001 and Y4JAQ21001)Vacuum Interconnected Nanotech Workstation(Grant Nos.Nano-X and B2006)。
文摘Due to the wide application of UV-A(320 nm–400 nm)and UV-C(200 nm–280 nm)photodetectors,dual-wavelength(UV-A/UV-C)photodetectors are promising for future markets.A dual-wavelength UV photodetector based on vertical(Al,Ga)N nanowires and graphene has been demonstrated successfully,in which graphene is used as a transparent electrode.Both UV-A and UV-C responses can be clearly detected by the device,and the rejection ratio(R254 nm/R450 nm)exceeds35 times at an applied bias of-2 V.The short response time of the device is less than 20 ms.Furthermore,the underlying mechanism of double ultraviolet responses has also been analyzed systematically.The dual-wavelength detections could mainly result from the appropriate ratio of the thicknesses and the enough energy band difference of(Al,Ga)N and Ga N sections.
基金The authors are grateful for the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-JSC034)the Research Program of Scientific Instrument and Equipment of CAS(No.YJKYYQ20200073)+1 种基金the National Natural Science Foundation of China(No.62174172)The authors are thankful for the technical support from the Vacuum Interconnected Nanotech Workstation(Nano-X,No.F2309),Platform for Characterization&Test of SINANO,CAS.
文摘The rapid development of artificial intelligence poses an urgent need for low-energy-consumption and small-sized artificial photonic synapses.Here,it is pretty novel to demonstrate a light-stimulated synaptic device based on a single(Al,Ga)N nanowire successfully.Thanks to the presence of vacancy defects in the single nanowire,the artificial synaptic device can simulate multiple functions of biological synapses under stimulation of both 310 and 365 nm light photons,including paired-pulse facilitation,spike timing dependent plasticity,and memory learning capabilities.The energy consumption of artificial synaptic device can be reduced as little as 5.58×10^(-13) J,which is close to that of the biological synapse in human brain.Furthermore,the synaptic device is demonstrated to have the high stability for both long-time stimulation and long-time storage.Based on the experimental conductance of long-term potentiation and long-term depression,the simulated three-layer neural network can achieve a high recognition rate of 92%after only 10 training epochs.With a brain-like behavior,the single-nanowire-based synaptic devices can promote the development of visual neuromorphic computing technology and artificial intelligence systems requiring ultralow energy consumption.