剪切稠化流体是一种典型的非牛顿流体,研究气泡在其中的运动特性对优化设备结构、提高反应效率具有重要意义。文中采用流体体积(VOF)法,通过改变Gallilei数(Ga)、E tv s数(Eo)与流变指数(n),对牛顿流体(n=1)及剪切稠化流体(n>1)内气...剪切稠化流体是一种典型的非牛顿流体,研究气泡在其中的运动特性对优化设备结构、提高反应效率具有重要意义。文中采用流体体积(VOF)法,通过改变Gallilei数(Ga)、E tv s数(Eo)与流变指数(n),对牛顿流体(n=1)及剪切稠化流体(n>1)内气泡的形状、尾涡、终端速度和气泡周围液相黏度分布的变化进行了深入的数值研究。结果表明:气泡变形程度和尾涡尺寸随着Ga数或Eo数的增大而增加;剪切稠化效应会阻碍尾涡的形成,减小气泡的尾涡尺寸;气泡周围剪切速率的差异会导致气泡上方及尾部产生高黏度区域,该高黏度区域会随剪切稠化效应的增加而增大;气泡终端速度随Ga数的增大或流变指数n,Eo数的减小而增大。展开更多
All the parameters of beamforming are usually optimized simultaneously in implementing the optimization of antenna array pattern with multiple objectives and parameters by genetic algorithms (GAs). Firstly, this pap...All the parameters of beamforming are usually optimized simultaneously in implementing the optimization of antenna array pattern with multiple objectives and parameters by genetic algorithms (GAs). Firstly, this paper analyzes the performance of fitness functions of previous algorithms. It shows that original algorithms make the fitness functions too complex leading to large amount of calculation, and also the selection of the weight of parameters very sensitive due to many parameters optimized simultaneously. This paper proposes a kind of algorithm of composite beamforming, which detaches the antenna array into two parts corresponding to optimization of different objective parameters respectively. New algorithm substitutes the previous complex fitness function with two simpler functions. Both theoretical analysis and simulation results show that this method simplifies the selection of weighting parameters and reduces the complexity of calculation. Furthermore, the algorithm has better performance in lowering side lobe and interferences in comparison with conventional algorithms of beamforming in the case of slightly widening the main lobe.展开更多
The non-linear inversion of rock mechanics parameters based on genetic algorithm is presented. The principIe and step of genetic algorithm is also given. A brief discussion of this method and an application example is...The non-linear inversion of rock mechanics parameters based on genetic algorithm is presented. The principIe and step of genetic algorithm is also given. A brief discussion of this method and an application example is presented at the end of this paper. From the satisfied result, quick, convenient and practical new approach is developed to solve this kind of problems.展开更多
In this work, a systematic approach is presented to obtain the input-output equations of a single loop 4-bar spatial mechanisms. The dialytic method along with Denavit-Hartenberg parameters can be used to obtain these...In this work, a systematic approach is presented to obtain the input-output equations of a single loop 4-bar spatial mechanisms. The dialytic method along with Denavit-Hartenberg parameters can be used to obtain these equations efficiently. A genetic algorithm (GA) has been used to solve the problem of spatial mechanisms synthesis. Two types of mechanisms, e.g., RSCR and RSPC (R: revolute; S: spherical; C: cylindrical; P: prismatic), have illustrated the application of the GA to solve the problem of function generation and path generation. In some cases, the GA method becomes trapped in a local minimum. A combined GA-fuzzy logic (GA-FL) method is then used to improve the final result. The results show that GAs, combined with an adequate description of the mechanism, are well suited for spatial mechanism synthesis problems and have neither difficulties inherent to the choice of the initial feasible guess, nor a problem of convergence, as it is the case for deterministic methods.展开更多
文摘剪切稠化流体是一种典型的非牛顿流体,研究气泡在其中的运动特性对优化设备结构、提高反应效率具有重要意义。文中采用流体体积(VOF)法,通过改变Gallilei数(Ga)、E tv s数(Eo)与流变指数(n),对牛顿流体(n=1)及剪切稠化流体(n>1)内气泡的形状、尾涡、终端速度和气泡周围液相黏度分布的变化进行了深入的数值研究。结果表明:气泡变形程度和尾涡尺寸随着Ga数或Eo数的增大而增加;剪切稠化效应会阻碍尾涡的形成,减小气泡的尾涡尺寸;气泡周围剪切速率的差异会导致气泡上方及尾部产生高黏度区域,该高黏度区域会随剪切稠化效应的增加而增大;气泡终端速度随Ga数的增大或流变指数n,Eo数的减小而增大。
基金Supported by the National Natural Science Foundation of China (No. 60302020).
文摘All the parameters of beamforming are usually optimized simultaneously in implementing the optimization of antenna array pattern with multiple objectives and parameters by genetic algorithms (GAs). Firstly, this paper analyzes the performance of fitness functions of previous algorithms. It shows that original algorithms make the fitness functions too complex leading to large amount of calculation, and also the selection of the weight of parameters very sensitive due to many parameters optimized simultaneously. This paper proposes a kind of algorithm of composite beamforming, which detaches the antenna array into two parts corresponding to optimization of different objective parameters respectively. New algorithm substitutes the previous complex fitness function with two simpler functions. Both theoretical analysis and simulation results show that this method simplifies the selection of weighting parameters and reduces the complexity of calculation. Furthermore, the algorithm has better performance in lowering side lobe and interferences in comparison with conventional algorithms of beamforming in the case of slightly widening the main lobe.
文摘The non-linear inversion of rock mechanics parameters based on genetic algorithm is presented. The principIe and step of genetic algorithm is also given. A brief discussion of this method and an application example is presented at the end of this paper. From the satisfied result, quick, convenient and practical new approach is developed to solve this kind of problems.
基金Project supported by the CPER (Contrats de Projets Etat Région) Poitou-Charentes 2007-2013 (Program Project 10 "Imageset interactivités")the Tunisian Secretary of State of Scientific Research and Technology (SERST) through the contract LAB-MA 05
文摘In this work, a systematic approach is presented to obtain the input-output equations of a single loop 4-bar spatial mechanisms. The dialytic method along with Denavit-Hartenberg parameters can be used to obtain these equations efficiently. A genetic algorithm (GA) has been used to solve the problem of spatial mechanisms synthesis. Two types of mechanisms, e.g., RSCR and RSPC (R: revolute; S: spherical; C: cylindrical; P: prismatic), have illustrated the application of the GA to solve the problem of function generation and path generation. In some cases, the GA method becomes trapped in a local minimum. A combined GA-fuzzy logic (GA-FL) method is then used to improve the final result. The results show that GAs, combined with an adequate description of the mechanism, are well suited for spatial mechanism synthesis problems and have neither difficulties inherent to the choice of the initial feasible guess, nor a problem of convergence, as it is the case for deterministic methods.