研究了无有机胺醇水体系低硅铝比ZSM-5沸石的绿色合成方法。在无有机胺模板剂和不加晶种的醇水体系中,一步合成了形貌均一的小晶粒聚集体低硅铝比ZSM-5沸石,考察了合成体系中各配料的含量以及晶化温度对合成低硅铝比ZSM-5沸石的影响。利...研究了无有机胺醇水体系低硅铝比ZSM-5沸石的绿色合成方法。在无有机胺模板剂和不加晶种的醇水体系中,一步合成了形貌均一的小晶粒聚集体低硅铝比ZSM-5沸石,考察了合成体系中各配料的含量以及晶化温度对合成低硅铝比ZSM-5沸石的影响。利用XRD、FTIR、SEM、N_(2)吸附-脱附、^(27)Al MAS NMR和^(29)Si MAS NMR等方法对合成的ZSM-5沸石进行表征。实验结果表明,当n(Si)∶n(Al)=20,n(Na_(2)O)∶n(SiO_(2))=0.071,n(C_(2)H_(5)OH)∶n(SiO_(2))=1.77,晶化温度为160℃时,可合成具有高结晶度的纯相ZSM-5沸石。^(27)Al MAS NMR表征结果显示,合成的ZSM-5沸石主要含有骨架四配位铝,无非骨架铝。合成的ZSM-5沸石的比表面积和微孔孔体积分别为384 m^(2)/g和0.14 cm^(3)/g,总酸量达到789μmol/g,骨架n(Si)∶n(Al)=14.4。展开更多
在无有机胺模板剂和不加晶种体系中,采用较低晶化温度(130℃),在水热体系中一步合成了形貌均一的板块状高硅ZSM-5沸石(nSiO2/nAl2O3>90)。系统地考察了合成体系中原料的物质的量之比对合成ZSM-5沸石的影响。通过X射线衍射(XRD),傅里...在无有机胺模板剂和不加晶种体系中,采用较低晶化温度(130℃),在水热体系中一步合成了形貌均一的板块状高硅ZSM-5沸石(nSiO2/nAl2O3>90)。系统地考察了合成体系中原料的物质的量之比对合成ZSM-5沸石的影响。通过X射线衍射(XRD),傅里叶红外光谱(FT-IR),扫描电镜(SEM),低温氮气吸附/脱附和固体核磁共振(29Si MAS NMR)等技术手段对合成的ZSM-5沸石进行了物化表征。结果表明,当原料的物质的量之比nC2H5OH/nSiO2=2.8、nNa2O/nSiO2=0.14和nSiO2/nAl2O3=150时,可合成具有高结晶度的ZSM-5纯相沸石。比表面积和微孔孔容分别为409 m^2·g^-1和0.14 cm^3·g^-1,其骨架nSiO2/nAl2O3达到96.4。展开更多
文摘研究了无有机胺醇水体系低硅铝比ZSM-5沸石的绿色合成方法。在无有机胺模板剂和不加晶种的醇水体系中,一步合成了形貌均一的小晶粒聚集体低硅铝比ZSM-5沸石,考察了合成体系中各配料的含量以及晶化温度对合成低硅铝比ZSM-5沸石的影响。利用XRD、FTIR、SEM、N_(2)吸附-脱附、^(27)Al MAS NMR和^(29)Si MAS NMR等方法对合成的ZSM-5沸石进行表征。实验结果表明,当n(Si)∶n(Al)=20,n(Na_(2)O)∶n(SiO_(2))=0.071,n(C_(2)H_(5)OH)∶n(SiO_(2))=1.77,晶化温度为160℃时,可合成具有高结晶度的纯相ZSM-5沸石。^(27)Al MAS NMR表征结果显示,合成的ZSM-5沸石主要含有骨架四配位铝,无非骨架铝。合成的ZSM-5沸石的比表面积和微孔孔体积分别为384 m^(2)/g和0.14 cm^(3)/g,总酸量达到789μmol/g,骨架n(Si)∶n(Al)=14.4。
文摘在无有机胺模板剂和不加晶种体系中,采用较低晶化温度(130℃),在水热体系中一步合成了形貌均一的板块状高硅ZSM-5沸石(nSiO2/nAl2O3>90)。系统地考察了合成体系中原料的物质的量之比对合成ZSM-5沸石的影响。通过X射线衍射(XRD),傅里叶红外光谱(FT-IR),扫描电镜(SEM),低温氮气吸附/脱附和固体核磁共振(29Si MAS NMR)等技术手段对合成的ZSM-5沸石进行了物化表征。结果表明,当原料的物质的量之比nC2H5OH/nSiO2=2.8、nNa2O/nSiO2=0.14和nSiO2/nAl2O3=150时,可合成具有高结晶度的ZSM-5纯相沸石。比表面积和微孔孔容分别为409 m^2·g^-1和0.14 cm^3·g^-1,其骨架nSiO2/nAl2O3达到96.4。