Band structure of wurtzite (WZ) GaAs nanowires (NWs) is investigated by using photoluminescenee measurements under hydrostatic pressure at 6 K. We demonstrate that WZ GaAs NWs have a direct bandgap transition with...Band structure of wurtzite (WZ) GaAs nanowires (NWs) is investigated by using photoluminescenee measurements under hydrostatic pressure at 6 K. We demonstrate that WZ GaAs NWs have a direct bandgap transition with an emission energy of 1.53eV, corresponding to the optical transition between conduction band Г7c and valence band Г9v in WZ GaAs. The direct-to-pseudodirect bandgap transition can be observed by applying a pressure approximately above 2.5 GPa.展开更多
The first-principles calculations have been performed to determine the effects of Te doping to the structural, electronic, and optical properties of Ga As NWs. The calculated formation energies show that the single Te...The first-principles calculations have been performed to determine the effects of Te doping to the structural, electronic, and optical properties of Ga As NWs. The calculated formation energies show that the single Te energetically prefers to substitute the core Ga(Ef = 0.4111 eV) under As-rich conditions of Ga As nanowires, while on surface, the single Te tends to substitute the surface As site. With increasing the Te concentration, the favorable substitution sites are 2Te–Ga–A and 3Te–Ga–D. Thus, the stability of the structure of the electronic structure and optical properties are discussed.展开更多
We have investigated the effect of surface dangling bonds and molecular passivation on the doping of GaAs nanowires by first-principles calculations. Results show that the positively charged surface dangling bond on G...We have investigated the effect of surface dangling bonds and molecular passivation on the doping of GaAs nanowires by first-principles calculations. Results show that the positively charged surface dangling bond on Ga atom is the most stable defect for both ultrathin and large size GaAs nanowires. It can form the trap centers of holes and then prefer to capture the holes from p-type doping. Thus it could obviously reduce the efficiency of the p-type doping. We also found that the NO2 molecule is electronegative enough to capture the unpaired electrons of surface dangling bonds, which is an ideal passivation material for the Zn-doped GaAs nanowires.展开更多
GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nan...GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices.展开更多
The growth of GaAs nanowires directly on fused quartz substrates using molecular beam epitaxy via a vapor-liquid-solid mechanism with gold as catalyst is reported. Unlike conventional Au-catalyst MBE growth of nanowir...The growth of GaAs nanowires directly on fused quartz substrates using molecular beam epitaxy via a vapor-liquid-solid mechanism with gold as catalyst is reported. Unlike conventional Au-catalyst MBE growth of nanowires (NWs) on GaAs substrates, zinc blende is found to be the dominant crystal structure for NWs grown on fused-quartz substrates by MBE. Further transmission electron microscopy measurements show that the prepared ZB NWs have the growth direction of [112] and lamellar { 111 } twins extend through the length of NWs. Although there are longitudinal planar defects that extend through NWs, the narrow full width at half maximum of PL implies high crystal quality of NWs grown on fused-quartz substrates.展开更多
Vertical p-type gallium arsenide (GaAs) nanowires with pure zinc blende structure were grown on GaAs (111) B substrate by metal-organic chemical vapor deposition via a Au-catalyst vapor-liquid-solid mechanism. The...Vertical p-type gallium arsenide (GaAs) nanowires with pure zinc blende structure were grown on GaAs (111) B substrate by metal-organic chemical vapor deposition via a Au-catalyst vapor-liquid-solid mechanism. The p-type doping was investigated by additional diethyl zinc (DEZn). In the high Ⅱ/Ⅲ ratio range (Ⅱ/Ⅲ〉9.1%), there exists a critical length beyond which kinking takes place. Two possible reasons are discussed. Zn occurrence in the nanowires was verified by energy dispersive X-ray (EDX) analysis. Corresponding to Ⅱ/Ⅲ = 0.2%, the doping concentration is about 8 × 10^18 cm^-3.展开更多
Pure zinc blende GaAs nanowires were grown by metal organic chemical vapor deposition on GaAs(111) B substrates via Au catalyzed vapor-liquid-solid mechanism.We found that the grown nanowires are rod-like in shape a...Pure zinc blende GaAs nanowires were grown by metal organic chemical vapor deposition on GaAs(111) B substrates via Au catalyzed vapor-liquid-solid mechanism.We found that the grown nanowires are rod-like in shape and have a pure zinc blende structure;moreover,the growth rate is independent on its diameters.It can be concluded that, direct impingement of vapor species onto the Au-Ga droplets contributes to the growth of the nanowire;in contrast,the adatom diffusion makes little contribution.The results indicate that the droplet acts as a catalyst rather than an adatom collector,larger diameter and high supersatuation in the droplet leads to the pure zinc blende structure of the nanowire.展开更多
A highly efficient single-photon source based on a semiconductor quantum dot (QD) is a promising candidate in quantum information processing. We report a single-photon source based on self-assembled GaAs QDs in nano...A highly efficient single-photon source based on a semiconductor quantum dot (QD) is a promising candidate in quantum information processing. We report a single-photon source based on self-assembled GaAs QDs in nanowires with an extraction efficiency of 14%. The second-order correlation function g(2) (0) at saturate excitation power is estimated to be 0.28. The measured polarization of QD emission depends on the geometric relations between the directions of PL collection and the long axis of nanowires.展开更多
GaAs nanowires(NWs)are ideal materials for preparing near-infrared photodetectors owing to their high charge carrier mobility and direct band gap.Although the performance of GaAs NW photodetectors can be enhanced by s...GaAs nanowires(NWs)are ideal materials for preparing near-infrared photodetectors owing to their high charge carrier mobility and direct band gap.Although the performance of GaAs NW photodetectors can be enhanced by surface passivation or doping,it still cannot meet the requirement for applications.In this paper we propose a method to greatly improve the performances of GaAs NW photodetectors by hot-hole injection via surface plasmon polaritons.In this case,the responsivity of a single GaAs NW photodetector is increased by a fact of 3.2 to 6.56 A·W^(-1) by attaching capsulelike Au nanoparticles to its surface.This research uses an efficient route to improve the NW photocurrent,which is also important for the development of a high-performance near-infrared NW photodetecor.展开更多
The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum ...The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.展开更多
As one of the most important narrow bandgap ternary semiconductors, GaAs1−xSbx nanowires (NWs) have attracted extensive attention recently, due to the superior hole mobility and the tunable bandgap, which covers the w...As one of the most important narrow bandgap ternary semiconductors, GaAs1−xSbx nanowires (NWs) have attracted extensive attention recently, due to the superior hole mobility and the tunable bandgap, which covers the whole near-infrared (NIR) region, for technological applications in next-generation high-performance electronics and NIR photodetection. However, it is still a challenge to the synthesis of high-quality GaAs1−xSbx NWs across the entire range of composition, resulting in the lack of correlation investigation among stoichiometry, microstructure, electronics, and NIR photodetection. Here, we demonstrate the success growth of high-quality GaAs1−xSbx NWs with full composition range by adopting a simple and low-cost surfactant-assisted solid source chemical vapor deposition method. All of the as-prepared NWs are uniform, smooth, and straight, without any phase segregation in all stoichiometric compositions. The lattice constants of each NW composition have been well correlated with the chemical stoichiometry and confirmed by high-resolution transmission electron microscopy, X-ray diffraction, and Raman spectrum. Moreover, with the increase of Sb concentration, the hole mobility of the as-fabricated field-effect-transistors and the responsivity and detectivity of the as-fabricated NIR photodetectors increase accordingly. All the results suggest a careful stoichiometric design is required for achieving optimal NW device performances.展开更多
The growth of p-type GaAs nanowires(NWs)on GaAs(111)B substrates by metal-organic chemical vapor deposition(MOCVD)has been systematically investigated as a function of diethyl zinc(DEZn)flow.The growth rate of...The growth of p-type GaAs nanowires(NWs)on GaAs(111)B substrates by metal-organic chemical vapor deposition(MOCVD)has been systematically investigated as a function of diethyl zinc(DEZn)flow.The growth rate of GaAs NWs was slightly improved by Zn-doping and kink is observed under high DEZn flow.In addition,the Ⅰ–Ⅴ curves of GaAs NWs has been measured and the p-type dope concentration under the Ⅱ/Ⅲ ratio of 0.013 and 0.038 approximated to 1019–1020展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11474275
文摘Band structure of wurtzite (WZ) GaAs nanowires (NWs) is investigated by using photoluminescenee measurements under hydrostatic pressure at 6 K. We demonstrate that WZ GaAs NWs have a direct bandgap transition with an emission energy of 1.53eV, corresponding to the optical transition between conduction band Г7c and valence band Г9v in WZ GaAs. The direct-to-pseudodirect bandgap transition can be observed by applying a pressure approximately above 2.5 GPa.
基金supported by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications,China,No.2012LF1003)the Research Foundation of Education Bureau of Sichuan Province(No.16ZA0316)
文摘The first-principles calculations have been performed to determine the effects of Te doping to the structural, electronic, and optical properties of Ga As NWs. The calculated formation energies show that the single Te energetically prefers to substitute the core Ga(Ef = 0.4111 eV) under As-rich conditions of Ga As nanowires, while on surface, the single Te tends to substitute the surface As site. With increasing the Te concentration, the favorable substitution sites are 2Te–Ga–A and 3Te–Ga–D. Thus, the stability of the structure of the electronic structure and optical properties are discussed.
基金This work was supported by the National Basic Research Program of China (No.2010CB327600), the National Natural Science Foundation of China (No.61020106007 and No.61376019), the Natural Science Foundation of Beijing (No.4142038), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20120005110011), and the 111 Program of China (No.B07005). Jian-gong Cui would like to thank Dr. Xin Yan and Dr. Jun-shuai Li from Beijing University of Posts and Telecommunications for useful discussions.
文摘We have investigated the effect of surface dangling bonds and molecular passivation on the doping of GaAs nanowires by first-principles calculations. Results show that the positively charged surface dangling bond on Ga atom is the most stable defect for both ultrathin and large size GaAs nanowires. It can form the trap centers of holes and then prefer to capture the holes from p-type doping. Thus it could obviously reduce the efficiency of the p-type doping. We also found that the NO2 molecule is electronegative enough to capture the unpaired electrons of surface dangling bonds, which is an ideal passivation material for the Zn-doped GaAs nanowires.
文摘GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices.
基金Project supported by the National Natural Science Foundation of China(Nos.11104271,11179042)
文摘The growth of GaAs nanowires directly on fused quartz substrates using molecular beam epitaxy via a vapor-liquid-solid mechanism with gold as catalyst is reported. Unlike conventional Au-catalyst MBE growth of nanowires (NWs) on GaAs substrates, zinc blende is found to be the dominant crystal structure for NWs grown on fused-quartz substrates by MBE. Further transmission electron microscopy measurements show that the prepared ZB NWs have the growth direction of [112] and lamellar { 111 } twins extend through the length of NWs. Although there are longitudinal planar defects that extend through NWs, the narrow full width at half maximum of PL implies high crystal quality of NWs grown on fused-quartz substrates.
基金Project supported by the National Basic Research Program of China(No.2010CB327601)the Key International Cooperation Research Project of the National Natural Science Foundation of China(No.90201035)+2 种基金the Chinese Universities Scientific Fund(No. BUPT2009RC0410)the National Natural Science Foundation of China(No.61077049)the 111 Program of China(No.B07005).
文摘Vertical p-type gallium arsenide (GaAs) nanowires with pure zinc blende structure were grown on GaAs (111) B substrate by metal-organic chemical vapor deposition via a Au-catalyst vapor-liquid-solid mechanism. The p-type doping was investigated by additional diethyl zinc (DEZn). In the high Ⅱ/Ⅲ ratio range (Ⅱ/Ⅲ〉9.1%), there exists a critical length beyond which kinking takes place. Two possible reasons are discussed. Zn occurrence in the nanowires was verified by energy dispersive X-ray (EDX) analysis. Corresponding to Ⅱ/Ⅲ = 0.2%, the doping concentration is about 8 × 10^18 cm^-3.
基金Project supported by the Basic Research on Compatible Heterogeneous Integration and Functional-Microstructure Assemblage for the Development of Novel Optoelectronic Devices,China(No.2010CB327600)the 111 Program of China(No.B07005),the Program of Key International Science and Technology Cooperation Projects(No.2006DFB 11110)+3 种基金the New Century Excellent Talents in University (NCET-08-0736)the National High Technology R & D Program of China(Nos.2009AA03Z405,2009AA03Z417)the Chinese Universities Scientific Fund(Nos.BUPT2009RC0409,BUPT2009RC0410)the Program for Changjiang Scholars and Innovative Research Team in University,MOE(No.IRT0609).
文摘Pure zinc blende GaAs nanowires were grown by metal organic chemical vapor deposition on GaAs(111) B substrates via Au catalyzed vapor-liquid-solid mechanism.We found that the grown nanowires are rod-like in shape and have a pure zinc blende structure;moreover,the growth rate is independent on its diameters.It can be concluded that, direct impingement of vapor species onto the Au-Ga droplets contributes to the growth of the nanowire;in contrast,the adatom diffusion makes little contribution.The results indicate that the droplet acts as a catalyst rather than an adatom collector,larger diameter and high supersatuation in the droplet leads to the pure zinc blende structure of the nanowire.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922304the National Natural Science Foundation of China under Grant Nos 11474275 and 11204297
文摘A highly efficient single-photon source based on a semiconductor quantum dot (QD) is a promising candidate in quantum information processing. We report a single-photon source based on self-assembled GaAs QDs in nanowires with an extraction efficiency of 14%. The second-order correlation function g(2) (0) at saturate excitation power is estimated to be 0.28. The measured polarization of QD emission depends on the geometric relations between the directions of PL collection and the long axis of nanowires.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074018,12074045,61904017and 11804335)the Developing Project of Science and Technology of Jilin Province,China(Grant No.20200301052RQ)the Project of Education Department of Jilin Province,China(Grant Nos.JJKH20200763KJ and JJKH20210831KJ)。
文摘GaAs nanowires(NWs)are ideal materials for preparing near-infrared photodetectors owing to their high charge carrier mobility and direct band gap.Although the performance of GaAs NW photodetectors can be enhanced by surface passivation or doping,it still cannot meet the requirement for applications.In this paper we propose a method to greatly improve the performances of GaAs NW photodetectors by hot-hole injection via surface plasmon polaritons.In this case,the responsivity of a single GaAs NW photodetector is increased by a fact of 3.2 to 6.56 A·W^(-1) by attaching capsulelike Au nanoparticles to its surface.This research uses an efficient route to improve the NW photocurrent,which is also important for the development of a high-performance near-infrared NW photodetecor.
文摘The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.
基金We acknowledge the National Key R&D Program of China(No.2017YFA0305500)the National Natural Science Foundation of China(Nos.61904096 and 11774050)+3 种基金the Taishan Scholars Program of Shandong Province(No.tsqn201812006)Royal Society-Newton Advanced Fellowship(No.NA170214)Aero-Science Fund ASFC-20170269003,Shandong University multidisciplinary research and the innovation team of young scholars(No.2020QNQT015)“Outstanding youth scholar and Qilu young scholar”programs of Shandong University.
文摘As one of the most important narrow bandgap ternary semiconductors, GaAs1−xSbx nanowires (NWs) have attracted extensive attention recently, due to the superior hole mobility and the tunable bandgap, which covers the whole near-infrared (NIR) region, for technological applications in next-generation high-performance electronics and NIR photodetection. However, it is still a challenge to the synthesis of high-quality GaAs1−xSbx NWs across the entire range of composition, resulting in the lack of correlation investigation among stoichiometry, microstructure, electronics, and NIR photodetection. Here, we demonstrate the success growth of high-quality GaAs1−xSbx NWs with full composition range by adopting a simple and low-cost surfactant-assisted solid source chemical vapor deposition method. All of the as-prepared NWs are uniform, smooth, and straight, without any phase segregation in all stoichiometric compositions. The lattice constants of each NW composition have been well correlated with the chemical stoichiometry and confirmed by high-resolution transmission electron microscopy, X-ray diffraction, and Raman spectrum. Moreover, with the increase of Sb concentration, the hole mobility of the as-fabricated field-effect-transistors and the responsivity and detectivity of the as-fabricated NIR photodetectors increase accordingly. All the results suggest a careful stoichiometric design is required for achieving optimal NW device performances.
基金Project supported by the National Natural Science Foundation of China(Nos.61376019,61504010,61774021)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China(Nos.IPOC2017ZT02,IPOC2017ZZ01)
文摘The growth of p-type GaAs nanowires(NWs)on GaAs(111)B substrates by metal-organic chemical vapor deposition(MOCVD)has been systematically investigated as a function of diethyl zinc(DEZn)flow.The growth rate of GaAs NWs was slightly improved by Zn-doping and kink is observed under high DEZn flow.In addition,the Ⅰ–Ⅴ curves of GaAs NWs has been measured and the p-type dope concentration under the Ⅱ/Ⅲ ratio of 0.013 and 0.038 approximated to 1019–1020