The field screening effects in small-size GaAs photoconductive (PC) antenna are investigated via the well-known pump and probe terahertz (THz) generation technique. The peak amplitude of the THz pulses excited by ...The field screening effects in small-size GaAs photoconductive (PC) antenna are investigated via the well-known pump and probe terahertz (THz) generation technique. The peak amplitude of the THz pulses excited by the probe laser pulse as a function of the pump-probe time delay was measured. An equivalent-circuit model was used to simulate the experimental data. Based on the good agreement between the results of simulation and experiment, the time behavior of the radiation and space-charge fields was simulated. The results show that the spacecharge screening dominantly determines the device response in the whole time, while the radiation filed screening plays a key role in initial time which strongly affects the peak THz field. The parameter analysis was performed, which may be valuable on the optimum design for the antenna as a THz emitter.展开更多
文摘The field screening effects in small-size GaAs photoconductive (PC) antenna are investigated via the well-known pump and probe terahertz (THz) generation technique. The peak amplitude of the THz pulses excited by the probe laser pulse as a function of the pump-probe time delay was measured. An equivalent-circuit model was used to simulate the experimental data. Based on the good agreement between the results of simulation and experiment, the time behavior of the radiation and space-charge fields was simulated. The results show that the spacecharge screening dominantly determines the device response in the whole time, while the radiation filed screening plays a key role in initial time which strongly affects the peak THz field. The parameter analysis was performed, which may be valuable on the optimum design for the antenna as a THz emitter.