The experiment results of ultrawide band electromagnetic radiation with DC biased GaAs photoconductive semiconductor switch combining double ridge horn antenna triggered by high repeat frequency femto-second laser pul...The experiment results of ultrawide band electromagnetic radiation with DC biased GaAs photoconductive semiconductor switch combining double ridge horn antenna triggered by high repeat frequency femto-second laser pulse are reported.The GaAs switches are insulated by solid multi-layer transparent dielectrics and the distance of two electrodes is 3mm.The electrode material of the switch is ohmic contact through alloy technics with definite proportion of Au/Ge/Ni.This switch and double ridge horn antenna are integrated and the receive antenna is connected with the test instrument.From receiving antenna,ultra fast electrical pulse of 200ps rise time and 500ps pulse width is obtained,the repetition rate of the pulse is about 82MHz and the frequency spectrum is in the range of 4.7MHz~14GHz.The radiation characteristic of the ultrafast electrical pulse is analyzed.展开更多
A mode for the periodicity and weakening surge in semi-insulating GaAs photoconductive semiconductor switches is proposed based on the transferred-electron effect. It is shown that the periodicity and weakening surge ...A mode for the periodicity and weakening surge in semi-insulating GaAs photoconductive semiconductor switches is proposed based on the transferred-electron effect. It is shown that the periodicity and weakening surge is caused by the interaction between the self-excitation of the resonant circuit and transferred electron oscillation of the switch. The bias electric field (larger than Gunn threshold) across the switch is modulated by the AC elec-tric field,when the instantaneous bias electric field E is swinging below Gunn electric field threshold ET but grea-ter than the sustaining field Es (the minimum electric field required to support the domain) at the time of the do-main reaching the anode, and then the delayed-dipole domain mode of switch is obtained. It is the photon-activated carriers that satisfy the requirement of charge domain formation on carrier concentration and device length prod-uct of 10^12 cm^-2,and the semi-insulating GaAs photoconductive semiconductor switch is essentially a type of pho-ton-activated charge domain device.展开更多
We propose dynamic terahertz(THz) emission microscopy(DTEM) to visualize temporal–spatial dynamics of photoexcited carriers in electronic materials. DTEM utilizes THz pulses emitted from a sample by probe pulses irra...We propose dynamic terahertz(THz) emission microscopy(DTEM) to visualize temporal–spatial dynamics of photoexcited carriers in electronic materials. DTEM utilizes THz pulses emitted from a sample by probe pulses irradiated after pump pulse irradiation to perform time-resolved two-dimensional mapping of the THz pulse emission, reflecting various carrier dynamics. Using this microscopy, we investigated carrier dynamics in the gap region of low-temperature-grown Ga As and semi-insulating Ga As photoconductive switches of the identical-dipole type. The observed DTEM images are well explained by the change in the electric potential distribution between the electrodes caused by the screening effect of the photoexcited electron-hole pairs.展开更多
Experiments with the limited space-charge accumulation(LSA) mode of oscillation in a large gap semiinsulating (SI) GaAs photoconductive semiconductor switch(PCSS) are discussed.It has been observed that growth a...Experiments with the limited space-charge accumulation(LSA) mode of oscillation in a large gap semiinsulating (SI) GaAs photoconductive semiconductor switch(PCSS) are discussed.It has been observed that growth and drift of a photo-activated charge domain(PACD) are quenched only when the bias voltage is more than twice the threshold voltage.The original negative resistance characteristics are directly utilized in the LSA mode;during LSA operation the spatial average of the electric field varies over a large portion of the negative differential mobility region of the velocity-electric field characteristic.The work efficiency of an SI GaAs PCSS is remarkably enhanced by electric field excursions into the positive resistance region when the total electric field is only below the threshold part of the time.The LSA mode can only operate in the certain conditions that satisfy the quenching of the accumulation layer and the smaller initial domain voltage.展开更多
文摘The experiment results of ultrawide band electromagnetic radiation with DC biased GaAs photoconductive semiconductor switch combining double ridge horn antenna triggered by high repeat frequency femto-second laser pulse are reported.The GaAs switches are insulated by solid multi-layer transparent dielectrics and the distance of two electrodes is 3mm.The electrode material of the switch is ohmic contact through alloy technics with definite proportion of Au/Ge/Ni.This switch and double ridge horn antenna are integrated and the receive antenna is connected with the test instrument.From receiving antenna,ultra fast electrical pulse of 200ps rise time and 500ps pulse width is obtained,the repetition rate of the pulse is about 82MHz and the frequency spectrum is in the range of 4.7MHz~14GHz.The radiation characteristic of the ultrafast electrical pulse is analyzed.
文摘A mode for the periodicity and weakening surge in semi-insulating GaAs photoconductive semiconductor switches is proposed based on the transferred-electron effect. It is shown that the periodicity and weakening surge is caused by the interaction between the self-excitation of the resonant circuit and transferred electron oscillation of the switch. The bias electric field (larger than Gunn threshold) across the switch is modulated by the AC elec-tric field,when the instantaneous bias electric field E is swinging below Gunn electric field threshold ET but grea-ter than the sustaining field Es (the minimum electric field required to support the domain) at the time of the do-main reaching the anode, and then the delayed-dipole domain mode of switch is obtained. It is the photon-activated carriers that satisfy the requirement of charge domain formation on carrier concentration and device length prod-uct of 10^12 cm^-2,and the semi-insulating GaAs photoconductive semiconductor switch is essentially a type of pho-ton-activated charge domain device.
文摘We propose dynamic terahertz(THz) emission microscopy(DTEM) to visualize temporal–spatial dynamics of photoexcited carriers in electronic materials. DTEM utilizes THz pulses emitted from a sample by probe pulses irradiated after pump pulse irradiation to perform time-resolved two-dimensional mapping of the THz pulse emission, reflecting various carrier dynamics. Using this microscopy, we investigated carrier dynamics in the gap region of low-temperature-grown Ga As and semi-insulating Ga As photoconductive switches of the identical-dipole type. The observed DTEM images are well explained by the change in the electric potential distribution between the electrodes caused by the screening effect of the photoexcited electron-hole pairs.
基金Project supported by the National Natural Science Foundation of China(Nos.50837005,11204264)the Research Fund for Doctors of Xinjiang Normal University(No.XJNUBS 1220)the Research Fund for the Outstanding Young Teacher of Xinjiang Normal University (No.XJNU1214)
文摘Experiments with the limited space-charge accumulation(LSA) mode of oscillation in a large gap semiinsulating (SI) GaAs photoconductive semiconductor switch(PCSS) are discussed.It has been observed that growth and drift of a photo-activated charge domain(PACD) are quenched only when the bias voltage is more than twice the threshold voltage.The original negative resistance characteristics are directly utilized in the LSA mode;during LSA operation the spatial average of the electric field varies over a large portion of the negative differential mobility region of the velocity-electric field characteristic.The work efficiency of an SI GaAs PCSS is remarkably enhanced by electric field excursions into the positive resistance region when the total electric field is only below the threshold part of the time.The LSA mode can only operate in the certain conditions that satisfy the quenching of the accumulation layer and the smaller initial domain voltage.