The carrier-density-dependent spin relaxation dynamics for modulation-doped GaAs/Al0.3 Gao,TAs quantum wells is studied using the time-resolved magneto-Kerr rotation measurements. The electron spin relaxation time and...The carrier-density-dependent spin relaxation dynamics for modulation-doped GaAs/Al0.3 Gao,TAs quantum wells is studied using the time-resolved magneto-Kerr rotation measurements. The electron spin relaxation time and its in-plane anisotropy are studied as a function of the optically injected electron density, Moreover, the relative strength of the Rashba and the Dresselhaus spin-rbit coupling fields, and thus the observed spin relaxation time anisotropy, is further tuned by the additional excitation of a 532nm continuous wave laser, demonstrating an effective spin relaxation manipulation via an optical gating method.展开更多
Spin dynamics in several different types of ferromagnetic metal (FM)/10-nm-thick n-type GaAs quantum well (QW) junctions is studied by means of time-resolved Kerr rotation measurements. Compared with the MnGa/insi...Spin dynamics in several different types of ferromagnetic metal (FM)/10-nm-thick n-type GaAs quantum well (QW) junctions is studied by means of time-resolved Kerr rotation measurements. Compared with the MnGa/insitu doped lO-nm-thick n-type GaAs QW junction, the spin lifetime of the MnGa/modulation-doped 10-nm-thick n-type GaAs QW junction is shorter by a factor of 6, consistent with the D'yakonov Perel' spin relaxation mechanism. Meanwhile, compared with the spin lifetime of the MnAs/in-situ doped 10-nm-thick n-type GaAs QW junction, the MnGa/in-situ doped 10-nm-thick n-type GaAs QW junction is of a spin lifetime longer by a factor of 4.2. The later observation is well explained by the Rashba effect in the presence of structure inversion asymmetry, which acts directly on photo-excited electron spins. We demonstrate that MnGa-like FM/in-situ doped 10-nm-thick n-type GaAs QW junctions, which possess relatively low interfaciai potential barriers, are able to provide long spin lifetimes.展开更多
In this Letter, the loss and gain characteristics of an unconventional InxGa1-xAs∕Ga As asymmetrical step well structure consisting of variable indium contents of InxGa1-xAs materials are measured and analyzed for th...In this Letter, the loss and gain characteristics of an unconventional InxGa1-xAs∕Ga As asymmetrical step well structure consisting of variable indium contents of InxGa1-xAs materials are measured and analyzed for the first time, to the best of our knowledge. This special well structure is formed based on the indium-rich effect from the material growth process. The loss and gain are obtained by optical pumping and photoluminescence(PL)spectrum measurement at dual facets of an edge-emitting device. Unlike conventional quasi-rectangle wells, the asymmetrical step well may lead to a hybrid strain configuration containing both compressive and tensile strains and, thus, special loss and gain characteristics. The results will be very helpful in the development of multiple wavelength In Ga As-based semiconductor lasers.展开更多
Molecular beam epitaxy growth of an In;Ga;As/GaAs quantum well(QW) structure(x equals to 0.17 or 0.3) on offcut(100) Ge substrate has been investigated.The samples were characterized by atomic force microscopy,p...Molecular beam epitaxy growth of an In;Ga;As/GaAs quantum well(QW) structure(x equals to 0.17 or 0.3) on offcut(100) Ge substrate has been investigated.The samples were characterized by atomic force microscopy,photoluminescence(PL),and high resolution transmission electron microscopy.High temperature annealing of the Ge substrate is necessary to grow GaAs buffer layer without anti-phase domains.During the subsequent growth of the GaAs buffer layer and an In;Ga;As/GaAs QW structure,temperature plays a key role. The mechanism by which temperature influences the material quality is discussed.High quality In;Ga;As/GaAs QW structure samples on Ge substrate with high PL intensity,narrow PL linewidth and flat surface morphology have been achieved by optimizing growth temperatures.Our results show promising device applications forⅢ-Ⅴcompound semiconductor materials grown on Ge substrates.展开更多
This paper presents Atmospheric Pressure Metalorganic Chemical Vapor Deposition(AP-MOCVD) growth of GaAs/Al-xGa_(1-x)As multiquantum wells for the study of intersubband transition.The multiple quantum well structures ...This paper presents Atmospheric Pressure Metalorganic Chemical Vapor Deposition(AP-MOCVD) growth of GaAs/Al-xGa_(1-x)As multiquantum wells for the study of intersubband transition.The multiple quantum well structures are characterized by using cross-sectional transmission electron microscopy(TEM) and low temperature photoluminescence(PL),which are in consistent with the designed parameters.The in- frared absorption from intersubband transitions between the bounded- ground state and the extended excited state in GaAs/AtGaAs quantum wells shows peak at 10 μm with FWHM 250 cm^(-1).The absorption peak positions are in agreement with the calculated results based on the envelope function approximation.展开更多
The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and witho...The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.展开更多
A series of GaAs/A1As multiple-quantum wells doped with Be is grown by molecular beam epitaxy. The photolu- minescence spectra are measured at 4, 20, 40, 80, 120, and 200 K, respectively. The recombination transition ...A series of GaAs/A1As multiple-quantum wells doped with Be is grown by molecular beam epitaxy. The photolu- minescence spectra are measured at 4, 20, 40, 80, 120, and 200 K, respectively. The recombination transition emission of heavy-hole and light-hole free excitons is clearly observed and the transition energies are measured with different quantum well widths. In addition, a theoretical model of excitonic states in the quantum wells is used, in which the symmetry of the component of the exciton wave function representing the relative motion is allowed to vary between the two- and three- dimensional limits. Then, within the effective mass and envelope function approximation, the recombination transition energies of the heavy- and light-hole excitons in GaAs/A1As multiple-quantum wells are calculated each as a function of quantum well width by the shooting method and variational principle with two variational parameters. The results show that the excitons are neither 2D nor 3D like, but are in between in character and that the theoretical calculation is in good agreement with the experimental results.展开更多
Three samples of GaAs/A1As multiple-quantum wells with different quantum well widths and tS-doped with Be ac- ceptors at the well center were grown on (100) GaAs substrates by molecular beam epitaxy. Polarized Raman...Three samples of GaAs/A1As multiple-quantum wells with different quantum well widths and tS-doped with Be ac- ceptors at the well center were grown on (100) GaAs substrates by molecular beam epitaxy. Polarized Raman spectra were recorded on the three samples at temperatures in a range of 4-50 K in a backscattering configuration. The two branches of coupled modes due to the interaction of the hole intersubband transitions and the quantum-well longitudinal optical (LO) phonon were observed clearly. The evaluation formalism of the Green function was employed and each lineshape of the Raman spectrum of the coupled modes was simulated. The dependence of the peak position of Raman shifts of the two coupled modes as well as the quantum-well LO phonon on the quantum-well size and measured temperature were given, and the coupling interaction mechanism between the hole subband transitions and the quantum-well LO phonon was researched.展开更多
The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of th...The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots展开更多
We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping fi...We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the OH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.展开更多
The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantu...The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantum on a Si substrate is further investigated using atomic force microscopy, etch pit density and temperature-dependent photoluminescence (PL) measurements. The PL for Si-based InAs/GaAs quantum dots appears to be very sensitive to the initial OaAs nucleation temperature and thickness with strongest room-temperature emission at 40000 (17Onto nucleation layer thickness), due to the lower density of defects generated under this growth condition, and stronger carrier confinement within the quantum dots.展开更多
The threading dislocations(TDs)in GaAs/Si epitaxial layers due to the lattice mismatch seriously degrade the performance of the lasers grown on silicon.The insertion of InAs quantum dots(QDs)acting as dislocation filt...The threading dislocations(TDs)in GaAs/Si epitaxial layers due to the lattice mismatch seriously degrade the performance of the lasers grown on silicon.The insertion of InAs quantum dots(QDs)acting as dislocation filters is a pretty good alternative to solving this problem.In this paper,a finite element method(FEM)is proposed to calculate the critical condition for InAs/GaAs QDs bending TDs into interfacial misfit dislocations(MDs).Making a comparison of elastic strain energy between the two isolated systems,a reasonable result is obtained.The effect of the cap layer thickness and the base width of QDs on TD bending are studied,and the results show that the bending area ratio of single QD(the bending area divided by the area of the QD base)is evidently affected by the two factors.Moreover,we present a method to evaluate the bending capability of single-layer QDs and multi-layer QDs.For the QD with 24-nm base width and 5-nm cap layer thickness,taking the QD density of 10^(11) cm^(-2) into account,the bending area ratio of single-layer QDs(the area of bending TD divided by the area of QD layer)is about 38.71%.With inserting five-layer InAs QDs,the TD density decreases by 91.35%.The results offer the guidelines for designing the QD dislocation filters and provide an important step towards realizing the photonic integration circuits on silicon.展开更多
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low grow...Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.展开更多
Here we report 1.3μm electrical injection lasers based on InAs/GaAs quantum dots(QDs)grown on a GaAs substrate,which can steadily work at 110-℃without visible degradation.The QD structure is designed by applying the...Here we report 1.3μm electrical injection lasers based on InAs/GaAs quantum dots(QDs)grown on a GaAs substrate,which can steadily work at 110-℃without visible degradation.The QD structure is designed by applying the Stranski-Krastanow growth mode in solid source molecular beam epitaxy.The density of InAs QDs in the active region is increased from 3.8×10^(10)cm^(-2)to 5.9×10^(10)cm^(-2).As regards laser performance,the maximum output power of devices with lowdensity QDs as the active region is 65 m W at room temperature,and that of devices with the high-density QDs is 103 mW.Meanwhile the output power of high-density devices is 131 mW under an injection current of 4 A at 110-℃.展开更多
A highly efficient single-photon source based on a semiconductor quantum dot (QD) is a promising candidate in quantum information processing. We report a single-photon source based on self-assembled GaAs QDs in nano...A highly efficient single-photon source based on a semiconductor quantum dot (QD) is a promising candidate in quantum information processing. We report a single-photon source based on self-assembled GaAs QDs in nanowires with an extraction efficiency of 14%. The second-order correlation function g(2) (0) at saturate excitation power is estimated to be 0.28. The measured polarization of QD emission depends on the geometric relations between the directions of PL collection and the long axis of nanowires.展开更多
The time-resolved photoluminescence and steady photoluminescence (TRPL and PL) spectra on self-assembled InAs/GaAs quantum dots (QDs) are investigated. By depositing GaAs/InAs short period superlattices (SLs), 1.48μm...The time-resolved photoluminescence and steady photoluminescence (TRPL and PL) spectra on self-assembled InAs/GaAs quantum dots (QDs) are investigated. By depositing GaAs/InAs short period superlattices (SLs), 1.48μm emission is obtained at room temperature. Temperature dependent PL measurements show that the PL intensity of the emission is very steady. It decays only to half as the temperature increases from 15K to room temperature, while at the same time, the intensity of the other emission decreases by a factor of 5 orders of magnitude. These two emissions are attributed to large-size QDs and short period superlattices (SLs), respectively. Large-size QDs are easier to capture and confine carriers, which benefits the lifetime of PL, and therefore makes the emission intensity insensitive to the temperature.展开更多
Left-handedness with three zero-absorption windows is achieved in a triple-quantum-dot system. With the typ- ical parameters of a GaAs/AlGaAs heterostructure, the simultaneous negative relative electric permittivity a...Left-handedness with three zero-absorption windows is achieved in a triple-quantum-dot system. With the typ- ical parameters of a GaAs/AlGaAs heterostructure, the simultaneous negative relative electric permittivity and magnetic permeability are obtained by the adjustable incoherent pumping field and two inter-dot tunnelings. Furthermore, three zero-absorption windows in the left-handedness frequency bands are observed. The left- handedness with zero-absorption in the solid state heterostrueture may solve the challenges not only in the left-handed materials achieved by the photonic resonant scheme but also in the application of negative refractive materials with a large amount of absorption.展开更多
Multiple quantum well spatial light modulators with 128×128 array in 38μm pitch are fabricated using two pproaches, one with an attachment of an optical substrate and another one without. These two fabrication p...Multiple quantum well spatial light modulators with 128×128 array in 38μm pitch are fabricated using two pproaches, one with an attachment of an optical substrate and another one without. These two fabrication processes are described and compared.展开更多
A population inversion study of GaAs/AlxGa1-xAs three-quantum-well quantum cascade structures is presented. We derive the population inversion condition (PIC) of the active region (AR) and discuss the PICs on diff...A population inversion study of GaAs/AlxGa1-xAs three-quantum-well quantum cascade structures is presented. We derive the population inversion condition (PIC) of the active region (AR) and discuss the PICs on different structures by changing structural parameters such as the widths of quantum wells or barriers in the AR. For some instances, the PIC can be simplified and is proportional to the spontaneous emission lifetime between the second and the first excited states, whereas some other instances imply that the PIC is proportional to the state lifetime of the second excited state.展开更多
We fabricate a GaAs-based InGaAs/InGaAsP multiple quantum wells (MQWs) laser at 1.55 pm. Using two-step growth method and thermal cyclic annealing, a thin low-temperature InP layer and a thick InP buffer layer are g...We fabricate a GaAs-based InGaAs/InGaAsP multiple quantum wells (MQWs) laser at 1.55 pm. Using two-step growth method and thermal cyclic annealing, a thin low-temperature InP layer and a thick InP buffer layer are grown on GaAs substrates by low-pressure metal organic chemical vapor deposition technology. Then, high- quality MQWs laser structures are grown on the InP buffer layer. Under quasi-continuous wave (QCW) condition, a threshold current of 476 mA and slope efficiency of 0.15 mW/mA are achieved for a broad area device with 50 μm wide strip and 500 μm long cavity at room-temperature. The peak wavelength of emission spectrum is 1549.5 nm at 700 mA. The device is operating for more than 2000 h at room-temperature and 600 mA.展开更多
基金Supported by the National Natural Science Foundation Program of China under Grant Nos 11274302,11474276 and 61290303
文摘The carrier-density-dependent spin relaxation dynamics for modulation-doped GaAs/Al0.3 Gao,TAs quantum wells is studied using the time-resolved magneto-Kerr rotation measurements. The electron spin relaxation time and its in-plane anisotropy are studied as a function of the optically injected electron density, Moreover, the relative strength of the Rashba and the Dresselhaus spin-rbit coupling fields, and thus the observed spin relaxation time anisotropy, is further tuned by the additional excitation of a 532nm continuous wave laser, demonstrating an effective spin relaxation manipulation via an optical gating method.
文摘Spin dynamics in several different types of ferromagnetic metal (FM)/10-nm-thick n-type GaAs quantum well (QW) junctions is studied by means of time-resolved Kerr rotation measurements. Compared with the MnGa/insitu doped lO-nm-thick n-type GaAs QW junction, the spin lifetime of the MnGa/modulation-doped 10-nm-thick n-type GaAs QW junction is shorter by a factor of 6, consistent with the D'yakonov Perel' spin relaxation mechanism. Meanwhile, compared with the spin lifetime of the MnAs/in-situ doped 10-nm-thick n-type GaAs QW junction, the MnGa/in-situ doped 10-nm-thick n-type GaAs QW junction is of a spin lifetime longer by a factor of 4.2. The later observation is well explained by the Rashba effect in the presence of structure inversion asymmetry, which acts directly on photo-excited electron spins. We demonstrate that MnGa-like FM/in-situ doped 10-nm-thick n-type GaAs QW junctions, which possess relatively low interfaciai potential barriers, are able to provide long spin lifetimes.
基金supported by the National Natural Science Foundation of China under Grant Nos.61376067 and61474118
文摘In this Letter, the loss and gain characteristics of an unconventional InxGa1-xAs∕Ga As asymmetrical step well structure consisting of variable indium contents of InxGa1-xAs materials are measured and analyzed for the first time, to the best of our knowledge. This special well structure is formed based on the indium-rich effect from the material growth process. The loss and gain are obtained by optical pumping and photoluminescence(PL)spectrum measurement at dual facets of an edge-emitting device. Unlike conventional quasi-rectangle wells, the asymmetrical step well may lead to a hybrid strain configuration containing both compressive and tensile strains and, thus, special loss and gain characteristics. The results will be very helpful in the development of multiple wavelength In Ga As-based semiconductor lasers.
基金Project supported by the National Natural Science Foundation of China(No60625405)the National Basic Research Program of China (Nos2007CB936304,2010CB327601)
文摘Molecular beam epitaxy growth of an In;Ga;As/GaAs quantum well(QW) structure(x equals to 0.17 or 0.3) on offcut(100) Ge substrate has been investigated.The samples were characterized by atomic force microscopy,photoluminescence(PL),and high resolution transmission electron microscopy.High temperature annealing of the Ge substrate is necessary to grow GaAs buffer layer without anti-phase domains.During the subsequent growth of the GaAs buffer layer and an In;Ga;As/GaAs QW structure,temperature plays a key role. The mechanism by which temperature influences the material quality is discussed.High quality In;Ga;As/GaAs QW structure samples on Ge substrate with high PL intensity,narrow PL linewidth and flat surface morphology have been achieved by optimizing growth temperatures.Our results show promising device applications forⅢ-Ⅴcompound semiconductor materials grown on Ge substrates.
基金Work supported by the National Natural Science Foundation of China.
文摘This paper presents Atmospheric Pressure Metalorganic Chemical Vapor Deposition(AP-MOCVD) growth of GaAs/Al-xGa_(1-x)As multiquantum wells for the study of intersubband transition.The multiple quantum well structures are characterized by using cross-sectional transmission electron microscopy(TEM) and low temperature photoluminescence(PL),which are in consistent with the designed parameters.The in- frared absorption from intersubband transitions between the bounded- ground state and the extended excited state in GaAs/AtGaAs quantum wells shows peak at 10 μm with FWHM 250 cm^(-1).The absorption peak positions are in agreement with the calculated results based on the envelope function approximation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574362,61210014,and 11374340the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission under Grant No Z151100003515001
文摘The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.
基金supported by the National Natural Science Foundation of China(Grant No.61178039)the Natural Science Foundation of Shandong ProvinceChina(Grant No.ZR2012FM028)
文摘A series of GaAs/A1As multiple-quantum wells doped with Be is grown by molecular beam epitaxy. The photolu- minescence spectra are measured at 4, 20, 40, 80, 120, and 200 K, respectively. The recombination transition emission of heavy-hole and light-hole free excitons is clearly observed and the transition energies are measured with different quantum well widths. In addition, a theoretical model of excitonic states in the quantum wells is used, in which the symmetry of the component of the exciton wave function representing the relative motion is allowed to vary between the two- and three- dimensional limits. Then, within the effective mass and envelope function approximation, the recombination transition energies of the heavy- and light-hole excitons in GaAs/A1As multiple-quantum wells are calculated each as a function of quantum well width by the shooting method and variational principle with two variational parameters. The results show that the excitons are neither 2D nor 3D like, but are in between in character and that the theoretical calculation is in good agreement with the experimental results.
基金Project supported by Shandong Province Natural Science Foundation,China(Grant No.ZR2017MF018)the National Natural Science Foundation of China(Grant No.61675223)
文摘Three samples of GaAs/A1As multiple-quantum wells with different quantum well widths and tS-doped with Be ac- ceptors at the well center were grown on (100) GaAs substrates by molecular beam epitaxy. Polarized Raman spectra were recorded on the three samples at temperatures in a range of 4-50 K in a backscattering configuration. The two branches of coupled modes due to the interaction of the hole intersubband transitions and the quantum-well longitudinal optical (LO) phonon were observed clearly. The evaluation formalism of the Green function was employed and each lineshape of the Raman spectrum of the coupled modes was simulated. The dependence of the peak position of Raman shifts of the two coupled modes as well as the quantum-well LO phonon on the quantum-well size and measured temperature were given, and the coupling interaction mechanism between the hole subband transitions and the quantum-well LO phonon was researched.
文摘The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots
文摘We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the OH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434010,11574356 and 11504415the Funds from the Royal Society,the Defense Science Technology Laboratory and UK Engineering and Physics Research Council
文摘The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantum on a Si substrate is further investigated using atomic force microscopy, etch pit density and temperature-dependent photoluminescence (PL) measurements. The PL for Si-based InAs/GaAs quantum dots appears to be very sensitive to the initial OaAs nucleation temperature and thickness with strongest room-temperature emission at 40000 (17Onto nucleation layer thickness), due to the lower density of defects generated under this growth condition, and stronger carrier confinement within the quantum dots.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874148,61974141,and 61674020)the Beijing Natural Science Foundation,China(Grant No.4192043)+3 种基金the National Key Research and Development Program of China(Grant No.2018YFB2200104)the Fund from the Beijing Municipal Science&Technology Commission,China(Grant No.Z191100004819012)the Project of the State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,China(Grant No.IPOC2018ZT01)the 111 Project of China(Grant No.B07005).
文摘The threading dislocations(TDs)in GaAs/Si epitaxial layers due to the lattice mismatch seriously degrade the performance of the lasers grown on silicon.The insertion of InAs quantum dots(QDs)acting as dislocation filters is a pretty good alternative to solving this problem.In this paper,a finite element method(FEM)is proposed to calculate the critical condition for InAs/GaAs QDs bending TDs into interfacial misfit dislocations(MDs).Making a comparison of elastic strain energy between the two isolated systems,a reasonable result is obtained.The effect of the cap layer thickness and the base width of QDs on TD bending are studied,and the results show that the bending area ratio of single QD(the bending area divided by the area of the QD base)is evidently affected by the two factors.Moreover,we present a method to evaluate the bending capability of single-layer QDs and multi-layer QDs.For the QD with 24-nm base width and 5-nm cap layer thickness,taking the QD density of 10^(11) cm^(-2) into account,the bending area ratio of single-layer QDs(the area of bending TD divided by the area of QD layer)is about 38.71%.With inserting five-layer InAs QDs,the TD density decreases by 91.35%.The results offer the guidelines for designing the QD dislocation filters and provide an important step towards realizing the photonic integration circuits on silicon.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60706009, 90401025, 60736036, 60777021 and60476009)the National Key Basic Research Program of China (Grant Nos 2006CB604901 and 2006CB604902)the National High Technology Research and Development Program of China (Grant Nos 2006AA01Z256, 2007AA03Z419 and 2007AA03Z417)
文摘Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.
基金the Science and Technology Program of Guangzhou(Grant No.202103030001)the KeyArea Research and Development Program of Guangdong Province(Grant No.2018B030329001)+8 种基金the National Natural Science Foundation of China(Grant Nos.62035017,61505196,and 62204238)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the Major Program of the National Natural Science Foundation of China(Grant Nos.61790580 and 61790581)the Chinese Academy of Sciences and Changchun City Science and Technology Innovation Cooperation Project(Grant No.21SH06)Jincheng Key Research and Development Project(Grant No.20210209)the Key R&D Program of Shanxi Province(Grant No.202102030201004)the R&D Program of Guangdong Province(Grant Nos.2018B030329001 and2020B0303020001)Shenzhen Technology Research Project(Grant No.JSGG20201102145200001)the National Key Technologies R&D Program of China(Grant No.2018YFA0306100)。
文摘Here we report 1.3μm electrical injection lasers based on InAs/GaAs quantum dots(QDs)grown on a GaAs substrate,which can steadily work at 110-℃without visible degradation.The QD structure is designed by applying the Stranski-Krastanow growth mode in solid source molecular beam epitaxy.The density of InAs QDs in the active region is increased from 3.8×10^(10)cm^(-2)to 5.9×10^(10)cm^(-2).As regards laser performance,the maximum output power of devices with lowdensity QDs as the active region is 65 m W at room temperature,and that of devices with the high-density QDs is 103 mW.Meanwhile the output power of high-density devices is 131 mW under an injection current of 4 A at 110-℃.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922304the National Natural Science Foundation of China under Grant Nos 11474275 and 11204297
文摘A highly efficient single-photon source based on a semiconductor quantum dot (QD) is a promising candidate in quantum information processing. We report a single-photon source based on self-assembled GaAs QDs in nanowires with an extraction efficiency of 14%. The second-order correlation function g(2) (0) at saturate excitation power is estimated to be 0.28. The measured polarization of QD emission depends on the geometric relations between the directions of PL collection and the long axis of nanowires.
基金Natural Science Foundation of Fujian Province(A992001)
文摘The time-resolved photoluminescence and steady photoluminescence (TRPL and PL) spectra on self-assembled InAs/GaAs quantum dots (QDs) are investigated. By depositing GaAs/InAs short period superlattices (SLs), 1.48μm emission is obtained at room temperature. Temperature dependent PL measurements show that the PL intensity of the emission is very steady. It decays only to half as the temperature increases from 15K to room temperature, while at the same time, the intensity of the other emission decreases by a factor of 5 orders of magnitude. These two emissions are attributed to large-size QDs and short period superlattices (SLs), respectively. Large-size QDs are easier to capture and confine carriers, which benefits the lifetime of PL, and therefore makes the emission intensity insensitive to the temperature.
基金Supported by the National Natural Science Foundation of China under Grant No 61205205the Foundation for Personnel Training Projects of Yunnan Province under Grant No KKSY201207068
文摘Left-handedness with three zero-absorption windows is achieved in a triple-quantum-dot system. With the typ- ical parameters of a GaAs/AlGaAs heterostructure, the simultaneous negative relative electric permittivity and magnetic permeability are obtained by the adjustable incoherent pumping field and two inter-dot tunnelings. Furthermore, three zero-absorption windows in the left-handedness frequency bands are observed. The left- handedness with zero-absorption in the solid state heterostrueture may solve the challenges not only in the left-handed materials achieved by the photonic resonant scheme but also in the application of negative refractive materials with a large amount of absorption.
文摘Multiple quantum well spatial light modulators with 128×128 array in 38μm pitch are fabricated using two pproaches, one with an attachment of an optical substrate and another one without. These two fabrication processes are described and compared.
基金supported by the National Natural Science Foundation of China(No.60976070)the Special Funds of China Academy of Engineering Physics(No.909)
文摘A population inversion study of GaAs/AlxGa1-xAs three-quantum-well quantum cascade structures is presented. We derive the population inversion condition (PIC) of the active region (AR) and discuss the PICs on different structures by changing structural parameters such as the widths of quantum wells or barriers in the AR. For some instances, the PIC can be simplified and is proportional to the spontaneous emission lifetime between the second and the first excited states, whereas some other instances imply that the PIC is proportional to the state lifetime of the second excited state.
基金supported by the National Natural Science Foundation of China(Nos.61274044 and61020106007)the National Basic Research Program of China(No.2010CB327600)+3 种基金the Natural Science Foundational Science and Technology Cooperation Projects(No.2011RR000100)the 111 Project of China(No.B07005)the Fundamental Research Funds for the Central University(No.2013RC1205)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130005130001)
文摘We fabricate a GaAs-based InGaAs/InGaAsP multiple quantum wells (MQWs) laser at 1.55 pm. Using two-step growth method and thermal cyclic annealing, a thin low-temperature InP layer and a thick InP buffer layer are grown on GaAs substrates by low-pressure metal organic chemical vapor deposition technology. Then, high- quality MQWs laser structures are grown on the InP buffer layer. Under quasi-continuous wave (QCW) condition, a threshold current of 476 mA and slope efficiency of 0.15 mW/mA are achieved for a broad area device with 50 μm wide strip and 500 μm long cavity at room-temperature. The peak wavelength of emission spectrum is 1549.5 nm at 700 mA. The device is operating for more than 2000 h at room-temperature and 600 mA.