Practical solar energy solutions must not only reduce the cost of the module,but also address the substantial balance of system costs.Here,we demonstrate a counter-intuitive approach based on gallium arsenide solar ce...Practical solar energy solutions must not only reduce the cost of the module,but also address the substantial balance of system costs.Here,we demonstrate a counter-intuitive approach based on gallium arsenide solar cells that can achieve extremely low-cost solar energy conversion with an estimated cost of only 3% that of conventional gallium arsenide solar cells using an accelerated,non-destructive epitaxial lift-off wafer recycling process along with a lightweight,thermoformed plastic,truncated mini-compound parabolic concentrator that avoids the need for active solar tracking.Using solar cell/concentrator assemblies whose orientations are adjusted only a few times per year,the annual energy harvesting is increased by 2.8 times compared with planar solar cells without solar tracking.These results represent a potentially drastic cost reduction in both the module and the balance of system costs compared with heavy,rigid conventional modules and trackers that are subject to wind loading damage and high installation costs.展开更多
Optical simulations of GaAs/AlGaAs thin-film waveguides were performed for investigating the dependence of the modal behavior on waveguide geometry and the resulting analytical sensitivity. Simulations were performed ...Optical simulations of GaAs/AlGaAs thin-film waveguides were performed for investigating the dependence of the modal behavior on waveguide geometry and the resulting analytical sensitivity. Simulations were performed for two distinct mid-infrared wavelengths, thereby demonstrating the necessity of individually designed waveguide structures for each spectral regime of interest. Hence, the modal behavior, sensitivity, and intensity of the evanescent field were investigated via modeling studies at 1600 and 1000 cm^(-1), thereby confirming the utility of such simulations for designing mid-infrared sensors based on thin-film waveguide technology.展开更多
文摘Practical solar energy solutions must not only reduce the cost of the module,but also address the substantial balance of system costs.Here,we demonstrate a counter-intuitive approach based on gallium arsenide solar cells that can achieve extremely low-cost solar energy conversion with an estimated cost of only 3% that of conventional gallium arsenide solar cells using an accelerated,non-destructive epitaxial lift-off wafer recycling process along with a lightweight,thermoformed plastic,truncated mini-compound parabolic concentrator that avoids the need for active solar tracking.Using solar cell/concentrator assemblies whose orientations are adjusted only a few times per year,the annual energy harvesting is increased by 2.8 times compared with planar solar cells without solar tracking.These results represent a potentially drastic cost reduction in both the module and the balance of system costs compared with heavy,rigid conventional modules and trackers that are subject to wind loading damage and high installation costs.
基金funding from the European Union’s Seventh Framework Programme managed by REA Research Executive Agency http://ec.europa.eu/rea (FP7/2007-2013) under grant agreement no.314018 FP7-SME-2012-SMEsupport of this study by the Kompetenznetz Funktionelle Nanostrukturen Baden Wuerttemberg,Germany
文摘Optical simulations of GaAs/AlGaAs thin-film waveguides were performed for investigating the dependence of the modal behavior on waveguide geometry and the resulting analytical sensitivity. Simulations were performed for two distinct mid-infrared wavelengths, thereby demonstrating the necessity of individually designed waveguide structures for each spectral regime of interest. Hence, the modal behavior, sensitivity, and intensity of the evanescent field were investigated via modeling studies at 1600 and 1000 cm^(-1), thereby confirming the utility of such simulations for designing mid-infrared sensors based on thin-film waveguide technology.