Dynamic characteristics of the single-crystal Ga N-passivated lateral AlGaN/GaN Schottky barrier diodes(SBDs)treated with proton irradiation are investigated.Radiation-induced changes including idealized Schottky inte...Dynamic characteristics of the single-crystal Ga N-passivated lateral AlGaN/GaN Schottky barrier diodes(SBDs)treated with proton irradiation are investigated.Radiation-induced changes including idealized Schottky interface and slightly degraded on-resistance(RON)are observed under 10-Me V proton irradiation at a fluence of 10^(14)cm^(-2).Because of the existing negative polarization charges induced at GaN/AlGaN interface,the dynamic ON-resistance(RON,dyn)shows negligible degradation after a 1000-s-long forward current stress of 50 mA to devices with and without being irradiated by protons.Furthermore,the normalized RON,dynincreases by only 14%that of the initial case after a 100-s-long bias of-600 V has been applied to the irradiated devices.The high-performance lateral AlGaN/GaN SBDs with tungsten as anode metal and in-situ single-crystal GaN as passivation layer show a great potential application in the harsh radiation environment of space.展开更多
In this study,a galliumnitride(GaN)substrate and its 15μmepitaxial layer were entirely grown by adopting the hydride vapor phase epitaxy(HVPE)technique.To enhance the breakdown voltage(VBR)of vertical GaN-on-GaN Scho...In this study,a galliumnitride(GaN)substrate and its 15μmepitaxial layer were entirely grown by adopting the hydride vapor phase epitaxy(HVPE)technique.To enhance the breakdown voltage(VBR)of vertical GaN-on-GaN Schottky barrier diodes(SBDs),a dual ion coimplantation of carbon and heliumwas employed to create the edge termination.The resulting devices exhibited a low turn-on voltage of 0.55 V,a high Ion/Ioff ratio of approximately 109,and a lowspecific onresistance of 1.93 mU cm^(2).When the ion implantation edge was terminated,the maximumVBR of the devices reached 1575 V,with an average improvement of 126%.These devices demonstrated a high figure of merit(FOM)of 1.28 GW cm^(-2) and showed excellent reliability during pulse stress testing.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62104185)the Fundamental Research Funds for the Central Universities,China(Grant No.JB211103)+1 种基金the National Natural Science Foundation for Distinguished Young Scholars,China(Grant No.61925404)the Wuhu and Xidian University Special Fund for Industry–University-Research Cooperation,China(Grant No.XWYCXY-012021010)。
文摘Dynamic characteristics of the single-crystal Ga N-passivated lateral AlGaN/GaN Schottky barrier diodes(SBDs)treated with proton irradiation are investigated.Radiation-induced changes including idealized Schottky interface and slightly degraded on-resistance(RON)are observed under 10-Me V proton irradiation at a fluence of 10^(14)cm^(-2).Because of the existing negative polarization charges induced at GaN/AlGaN interface,the dynamic ON-resistance(RON,dyn)shows negligible degradation after a 1000-s-long forward current stress of 50 mA to devices with and without being irradiated by protons.Furthermore,the normalized RON,dynincreases by only 14%that of the initial case after a 100-s-long bias of-600 V has been applied to the irradiated devices.The high-performance lateral AlGaN/GaN SBDs with tungsten as anode metal and in-situ single-crystal GaN as passivation layer show a great potential application in the harsh radiation environment of space.
基金supported by the GuangdongMajor Project of Basic and Applied Basic Research(2023B0303000012)Guangdong Science Foundation for Distinguished Young Scholars(2022B1515020073)Shenzhen Science and Technology Program(JCYJ20220818102809020).
文摘In this study,a galliumnitride(GaN)substrate and its 15μmepitaxial layer were entirely grown by adopting the hydride vapor phase epitaxy(HVPE)technique.To enhance the breakdown voltage(VBR)of vertical GaN-on-GaN Schottky barrier diodes(SBDs),a dual ion coimplantation of carbon and heliumwas employed to create the edge termination.The resulting devices exhibited a low turn-on voltage of 0.55 V,a high Ion/Ioff ratio of approximately 109,and a lowspecific onresistance of 1.93 mU cm^(2).When the ion implantation edge was terminated,the maximumVBR of the devices reached 1575 V,with an average improvement of 126%.These devices demonstrated a high figure of merit(FOM)of 1.28 GW cm^(-2) and showed excellent reliability during pulse stress testing.