We report the fabrication and characterization of light-emitting diodes based on n-ZnO/p-GaN heterojunctions. The n-type ZnO epilayer is deposited by metalorganic chemical vapor deposition (MOCVD) on a MOCVD grown M...We report the fabrication and characterization of light-emitting diodes based on n-ZnO/p-GaN heterojunctions. The n-type ZnO epilayer is deposited by metalorganic chemical vapor deposition (MOCVD) on a MOCVD grown Mg-doped p-GaN layer to form a p-n heterojunction. During the etching process, the relation between the etching depth and the etching time is linear in a HF and NH4 CI solution of a certain ratio. The etching rates of the SiO2 and ZnO are well controlled,which are essential for device fabrication. The current-voltage relationship of this heterojunction shows a diode-like rectifying behavior. In contrast to previous reports,electroluminescence (EL) emissions are observed by the naked eye at room temperature from the n-ZnO/p-GaN heterojunction under forward-and reverse-bias. The origins of these EL emissions are discussed in comparison with the pho- toluminescence spectra.展开更多
文摘We report the fabrication and characterization of light-emitting diodes based on n-ZnO/p-GaN heterojunctions. The n-type ZnO epilayer is deposited by metalorganic chemical vapor deposition (MOCVD) on a MOCVD grown Mg-doped p-GaN layer to form a p-n heterojunction. During the etching process, the relation between the etching depth and the etching time is linear in a HF and NH4 CI solution of a certain ratio. The etching rates of the SiO2 and ZnO are well controlled,which are essential for device fabrication. The current-voltage relationship of this heterojunction shows a diode-like rectifying behavior. In contrast to previous reports,electroluminescence (EL) emissions are observed by the naked eye at room temperature from the n-ZnO/p-GaN heterojunction under forward-and reverse-bias. The origins of these EL emissions are discussed in comparison with the pho- toluminescence spectra.