GaN-based light-emitting diodes (LEDs) with surface-textured indium tin oxide (ITO) as a transparent current spreading layer were fabricated. The ITO surface was textured by inductively coupled plasma (ICP) etch...GaN-based light-emitting diodes (LEDs) with surface-textured indium tin oxide (ITO) as a transparent current spreading layer were fabricated. The ITO surface was textured by inductively coupled plasma (ICP) etching technology using a monolayer of nickel (Ni) nanoparticles as the etching mask. The luminance intensity of ITO surface-textured GaN-based LEDs was enhanced by about 34% compared to that of conventional LED without textured ITO layer. In addition, the fabricated ITO surface-textured GaN-based LEDs would present a quite good performance in electrical characteristics. The results indicate that the scattering of photons emitted in the active layer was greatly enhanced via the textured ITO surface, and the ITO surface-textured technique could have a potential application in improving photoelectric characteristics for manufacturing GaN-based LEDs of higher brightness.展开更多
SiO2Al2O3 double dielectric stack layer was deposited on the surface of the GaN-based light-emitting diode (LED). The double dielectric stack layer enhances both the electrical characteristics and the optical output p...SiO2Al2O3 double dielectric stack layer was deposited on the surface of the GaN-based light-emitting diode (LED). The double dielectric stack layer enhances both the electrical characteristics and the optical output power of the LED because the first Al2O3 layer plays a role of effectively passivating the p-GaN surface and the second lower index SiO2 layer increases the critical angle of the light emitted from the LED surface. In addition, the effect of the Fresnel reflection is also responsible for the enhancement in output power of the double dielectric passivated LED. The leakage current of the LED passivated with Al2O3 layer was -3.46 × 10-11 A at -5 V, at least two and three orders lower in magnitude compared to that passivated with SiO2 layer (-7.14 × 10-9 A) and that of non-passivated LED (-1.9 × 10-8 A), respectively, which indicates that the Al2O3 layer is very effective in passivating the exposed GaN surface after dry etch and hence reduces nonradiative recombination as well as reabsorption of the emitted light near the etched surface.展开更多
The effect of back-diffusion of Mg dopants on optoelectronic characteristics of InGaN-based green light-emitting diodes (LEDs) is investigated. The LEDs with less Mg back-diffusion show blue shifts of longer wavelen...The effect of back-diffusion of Mg dopants on optoelectronic characteristics of InGaN-based green light-emitting diodes (LEDs) is investigated. The LEDs with less Mg back-diffusion show blue shifts of longer wavelengths and larger wavelengths with the increasing current, which results from the Mg-dopant-related polarization screening. The LEDs show enhanced efficiency with the decreasing Mg back-diffusion in the lower current region. Light outputs follow the power law L α I^m, with smaller parameter m in the LEDs with less Mg back-diffusion, indicating a lower density of trap states. The trap-assisted tunneling current is also suppressed by reducing Mg- defect-related nonradiative centers in the active region. Furthermore, the forward current-voltage characteristics are improved.展开更多
A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs' luminous efficiency, the pattern units of PSS become more complic...A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs' luminous efficiency, the pattern units of PSS become more complicated, and the effect of complicated geometrical features is almost impossible to study systematically by experiments only. By employing our new method, the influence of pattern parameters can be systematically studied, and various novel patterns are designed and optimized within a reasonable time span, with great improvement in LEDs' light extraction efficiency (LEE). Clearly, PSS pattern design with such a method deserves particular attention. We foresee that GaN-based LEDs on these newly designed PSSs will achieve more progress in the coming years.展开更多
In GaN-based green light-emitting diodes(LEDs) with different green quantum well numbers grown on Si(111)substrates by metal organic chemical vapor deposition are investigated. It is observed that V-shaped pits ap...In GaN-based green light-emitting diodes(LEDs) with different green quantum well numbers grown on Si(111)substrates by metal organic chemical vapor deposition are investigated. It is observed that V-shaped pits appear in the AFM images with the green quantum well number increasing from 5 to 9, and results in larger reverse-bias leakage current. Meanwhile, in the case of the sample with the number from 5 to 7 then to 9, the external quantum efficiency increases firstly, and then decreases. These phenomena may be related to the size of V-shaped pits in the active area and the distribution of electrons and holes in the active area caused by V-shaped pits. The optimal number of green quantum wells is determined to be 7.展开更多
The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior opt...The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior optical and electrical performance such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-InA1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.展开更多
InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole ...InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole injection layers show superior optical and electrical performance, such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-A1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.展开更多
InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron block...InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).展开更多
InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure wi...InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure with dip- aped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on Lmerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed ainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).展开更多
We have synthesized Ca2Si5N8:Eu^2+ phosphor through a solid-state reaction and investigated its structural and luminescent properties. Our Rietveld refinement of the crystal structure of Ca1.9Eu0.1Si5N8 reveals that...We have synthesized Ca2Si5N8:Eu^2+ phosphor through a solid-state reaction and investigated its structural and luminescent properties. Our Rietveld refinement of the crystal structure of Ca1.9Eu0.1Si5N8 reveals that Eu atoms substituting for Ca atoms occupy two crystallographic positions. Between 10 K and 300 K, Ca2Si5N8:Eu^2+ phosphor shows a broad red emission band centred at -1.97 eV-2.01 eV. The gravity centre of the excitation band is located at 3.0 eV 3.31 eV. The centroid shift of the 5d levels of Eu^2+ is determined to be -1.17 eV, and the red-shift of the lowest absorption band to be - 0.54 eV due to the crystal field splitting. We have analysed the temperature dependence of PL by using a configuration coordinate model. The Huang-Rhys parameter S = 6.0, the phonon energy hv = 52 meV, and the Stokes shift △S = 0.57 eV are obtained. The emission intensity maximum occurring at -200 K can be explained by a trapping effect. Both photoluminescence (PL) emission intensity and decay time decrease with temperature increasing beyond 200 K due to the non-radiative process.展开更多
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically,...Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.展开更多
With andromonoecious<i><span> Momordica charantia </span></i><span>L.</span><span> </span><span>(bitter gourd) as material, three light qualities</span><s...With andromonoecious<i><span> Momordica charantia </span></i><span>L.</span><span> </span><span>(bitter gourd) as material, three light qualities</span><span> </span><span>(50 μmol·m</span><sup><span style="vertical-align:super;">-2</span></sup><span>·s</span><sup><span style="vertical-align:super;">-1</span></sup><span>) including white LED light</span><span> </span><span>(WL), blue monochromatic light (B,</span><span> </span><span>465 nm), and red monochromatic light (R, 650 nm) were carried out to investigate their effects on seed germination, physiological and biochemical parameters, sex differentiation and photosynthetic characteristics of bitter gourd. The results showed that compared to the WL treatment, the R treatment significantly promoted seed germination, seedling height elongation and soluble sugar content, the B treatment significantly increased seedling stem diameter, reducing sugar content and soluble protein content, the R and B treatments both significantly reduced sucrose content, but their POD activity showed no significant difference. Compared with the R treatment, the B treatment significantly increased the total female flower number and female flower nod ratio in 30 nods of main stems. The study of photosynthetic characteristics found that the R and B treatments could effectively increase the </span><span>stomata</span><span>l conductance (GS) of leaves, significantly improved the net photosynthetic rate</span><span> </span><span>(Pn) compared to the WL treatment, and the effect of the B treatment was better. Compared to the R and WL treatments, the B treatment increased the maximum photosynthetic rate (P</span><sub><span style="vertical-align:sub;">max</span></sub><span>),</span><span> </span><span>apparent quantum efficiency</span><span> </span><span>(AQE) and light saturation point</span><span> </span><span>(LSP), and reduced the dark respiration rate (Rd) and light compensation point</span><span> </span><span>(LCP) of the leaves. Fit light response curves showed that the adaptability and utilization of weak light in bitter gourd were middle or below, but it showed higher adaptability and utilization of strong light. Thus, it suggests that </span><i><span>Momordica charantia</span></i><span> is a typical sun plan with lower Rd. In summary, it is concluded that blue light has a positive effect on the seed germination, seedling growth, sex differentiation and improving the photosynthetic performance, and this will lay the foundation for artificially regulating optimum photosynthesis using specific LEDs wavelength, and help to elucidate the relationship how light quality influences the sex differentiation of plant.</span>展开更多
The novel AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) with double superlattice structure(DSL) are proposed and demonstrated by numerical simulation and experimental verification. The DSL consists of 30-peri...The novel AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) with double superlattice structure(DSL) are proposed and demonstrated by numerical simulation and experimental verification. The DSL consists of 30-period Mg modulation-doped p-AlGaN/u-GaN superlattice(SL) and 4-period p-AlGaN/p-GaN SL electron blocking layer, which are used to replace the p-type GaN layer and electron blocking layer of conventional UV-LEDs, respectively. Due to the special effects and interfacial stress, the AlGaN/GaN short-period superlattice can reduce the acceptor ionization energy of the ptype regions, thereby increasing the hole concentration. Meanwhile, the multi-barrier electron blocking layers are effective in suppressing electron leakage and improving hole injection. Experimental results show that the enhancements of 22.5%and 37.9% in the output power and external quantum efficiency at 120 m A appear in the device with double superlattice structure.展开更多
The transport mechanisms of the reverse leakage current in the UV light-emitting diodes (380nm) are investi- gated by the temperature-dependent current-voltage measurement first. Three possible transport mechanisms,...The transport mechanisms of the reverse leakage current in the UV light-emitting diodes (380nm) are investi- gated by the temperature-dependent current-voltage measurement first. Three possible transport mechanisms, the space-limited-charge conduction, the variable-range hopping and the Poole-Frenkel emission, are proposed to explain the transport process of the reverse leakage current above 295 K, respectively. With the in-depth investigation, the former two transport mechanisms are excluded. It is found that the experimental data agree well with the Poole Frenkel emission model. Furthermore, the activation energies of the traps that cause the reverse leakage current are extracted, which are 0.05eV, 0.09eV, and 0.11 eV, respectively. This indicates that at least three types of trap states are located below the bottom of the conduction band in the depletion region of the UV LEDs.展开更多
GaN/InGaN superlattice barriers are used in InGaN-based light-emitting diodes (LEDs). The electrostatic field in the quantum wells, electron hole wavefunction overlap, carrier concentration, spontaneous emission spe...GaN/InGaN superlattice barriers are used in InGaN-based light-emitting diodes (LEDs). The electrostatic field in the quantum wells, electron hole wavefunction overlap, carrier concentration, spontaneous emission spectrum, light-current performance curve, and internal quantum efficiency are numerically investigated using the APSYS simulation software. It is found that the structure with GaN/InGaN superlattice barriers shows improved light output power, and lower current leakage and efficiency droop. According to our numerical simulation and analysis, these improvements in the electrical and optical characteristics are mainly attributed to the alleviation of the electrostatic field in the active region.展开更多
The advantages of a blue InGaN-based light-emitting diode with a p-InGaN layer inserted in the GaN barriers is studied. The carrier concentration in the quantum well, radiative recombination rate in the active region,...The advantages of a blue InGaN-based light-emitting diode with a p-InGaN layer inserted in the GaN barriers is studied. The carrier concentration in the quantum well, radiative recombination rate in the active region, output power, and internal quantum efficiency are investigated. The simulation results show that the InGaN-based light-emitting diode with a p-InGaN layer inserted in the barriers has better performance over its conventional counterpart and the light emitting diode with p-GaN inserted in the barriers. The improvement is due to enhanced Mg acceptor activation and enhanced hole injection into the quantum wells.展开更多
We use a simple and controllable method to fabricate GaN-based light-emitting diodes (LEDs) with 22° undercut sidewalls by the successful implementation of the inductively coupled plasma reactive ion etching (...We use a simple and controllable method to fabricate GaN-based light-emitting diodes (LEDs) with 22° undercut sidewalls by the successful implementation of the inductively coupled plasma reactive ion etching (ICP-RIE). Our exper- iment results show that the output powers of the LEDs with 22° undercut sidewalls are 34.8 rnW under a 20-mA current injection, 6.75% higher than 32.6 mW, the output powers of the conventional LEDs under the same current injection.展开更多
Progress with GaN-based light emitting diodes (LEDs) that incorporate nanostructures is reviewed, especially the re- cent achievements in our research group. Nano-patterned sapphire substrates have been used to grow...Progress with GaN-based light emitting diodes (LEDs) that incorporate nanostructures is reviewed, especially the re- cent achievements in our research group. Nano-patterned sapphire substrates have been used to grow an A1N template layer for deep-ultraviolet (DUV) LEDs. One efficient surface nano-texturing technology, hemisphere-cones-hybrid nanostruc- tures, was employed to enhance the extraction efficiency of InGaN flip-chip LEDs. Hexagonal nanopyramid GaN-based LEDs have been fabricated and show electrically driven color modification and phosphor-free white light emission because of the linearly increased quantum well width and indium incorporation from the shell to the core. Based on the nanostruc- tures, we have also fabricated surface plasmon-enhanced nanoporous GaN-based green LEDs using AAO membrane as a mask. Benefitting from the strong lateral SP coupling as well as good electrical protection by a passivation layer, the EL intensity of an SP-enhanced nanoporous LED was significantly enhanced by 380%. Furthermore, nanostructures have been used for the growth of GaN LEDs on amorphous substrates, the fabrication of stretchable LEDs, and for increasing the 3-dB modulation bandwidth for visible light communication.展开更多
Background:Pterygium is a sun-related ocular surface disease secondary to ultraviolet(UV)radiation exposure.Outdoor occupational UV exposure is known to occur secondary to sun exposure.We present a unique case of pter...Background:Pterygium is a sun-related ocular surface disease secondary to ultraviolet(UV)radiation exposure.Outdoor occupational UV exposure is known to occur secondary to sun exposure.We present a unique case of pterygium associated with indoor occupational light-emitting diode(LED)exposure not previously described in the literature.Case Description:A mobile phone repairer presented with blurred vision and a superotemporal pterygium of his dominant left eye associated with a magnifying glass LED work lamp was diagnosed.This was excised routinely with conjunctival autografting to the defect.Histopathology confirmed benign pterygium and recovery was uncomplicated with resolution of blur.Conclusions:The development of pterygium in our patient may have arisen due to the LED lamp’s wavelengths possibly falling within the UV as well as the upper end of the visible light radiation spectrum.Given the increasing reliance on LED light sources in modern life,ocular conditions arising from exposure to these radiation sources may now need to be listed in the differential diagnoses of patients with pterygium.Appropriate UV protection counselling for these types of lights may also now need to be considered.展开更多
In this work,GaN-based light-emitting diodes(LEDs) with a p-GaN/i-InGaN short-period superlattice(SPSL) structure,p-GaN and undoped GaN last quantum barrier(LQB) have been numerically investigated by using the APSYS s...In this work,GaN-based light-emitting diodes(LEDs) with a p-GaN/i-InGaN short-period superlattice(SPSL) structure,p-GaN and undoped GaN last quantum barrier(LQB) have been numerically investigated by using the APSYS simulation software.It has been found that the efficiency droop is significantly improved when the undoped GaN LQB in a typical blue LED is replaced by a p-GaN/i-InGaN SPSL structure.According to the simulation analysis,using the p-GaN/i-InGaN SPSL structure as LQB is beneficial to increasing the hole injection efficiency and decreasing the electron current leakage.Therefore,the radiative recombination and optical power are enhanced.展开更多
基金Project supported by the Production and Research Program of Guangdong Province and Ministry of Education (Grant No.2009B090300338)Guangdong Natural Science Foundation of China (Grant No.8251063101000007)+1 种基金Guangdong Science and Technology Plan of China (Grant No.2008B010200004)the Student Research Project of South China Normal University (Grant No.09XXKC03)
文摘GaN-based light-emitting diodes (LEDs) with surface-textured indium tin oxide (ITO) as a transparent current spreading layer were fabricated. The ITO surface was textured by inductively coupled plasma (ICP) etching technology using a monolayer of nickel (Ni) nanoparticles as the etching mask. The luminance intensity of ITO surface-textured GaN-based LEDs was enhanced by about 34% compared to that of conventional LED without textured ITO layer. In addition, the fabricated ITO surface-textured GaN-based LEDs would present a quite good performance in electrical characteristics. The results indicate that the scattering of photons emitted in the active layer was greatly enhanced via the textured ITO surface, and the ITO surface-textured technique could have a potential application in improving photoelectric characteristics for manufacturing GaN-based LEDs of higher brightness.
文摘SiO2Al2O3 double dielectric stack layer was deposited on the surface of the GaN-based light-emitting diode (LED). The double dielectric stack layer enhances both the electrical characteristics and the optical output power of the LED because the first Al2O3 layer plays a role of effectively passivating the p-GaN surface and the second lower index SiO2 layer increases the critical angle of the light emitted from the LED surface. In addition, the effect of the Fresnel reflection is also responsible for the enhancement in output power of the double dielectric passivated LED. The leakage current of the LED passivated with Al2O3 layer was -3.46 × 10-11 A at -5 V, at least two and three orders lower in magnitude compared to that passivated with SiO2 layer (-7.14 × 10-9 A) and that of non-passivated LED (-1.9 × 10-8 A), respectively, which indicates that the Al2O3 layer is very effective in passivating the exposed GaN surface after dry etch and hence reduces nonradiative recombination as well as reabsorption of the emitted light near the etched surface.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61505197 and 61334009the National High-Technology Research and Development Program of China under Grant No 2014AA032604
文摘The effect of back-diffusion of Mg dopants on optoelectronic characteristics of InGaN-based green light-emitting diodes (LEDs) is investigated. The LEDs with less Mg back-diffusion show blue shifts of longer wavelengths and larger wavelengths with the increasing current, which results from the Mg-dopant-related polarization screening. The LEDs show enhanced efficiency with the decreasing Mg back-diffusion in the lower current region. Light outputs follow the power law L α I^m, with smaller parameter m in the LEDs with less Mg back-diffusion, indicating a lower density of trap states. The trap-assisted tunneling current is also suppressed by reducing Mg- defect-related nonradiative centers in the active region. Furthermore, the forward current-voltage characteristics are improved.
基金Project supported by the National Natural Science Fundation for Excellent Young Scholars of China(Grant No.51422203)the National Natural Science Foundation of China(Grant No.51372001)+1 种基金the Outstanding Youth Foundation of Guangdong Scientific Committee(Grant No.S2013050013882)the Strategic Special Funds for LEDs of Guangdong Province,China(Grant Nos.2011A081301010,2011A081301012,2012A080302002,and 2012A080302004)
文摘A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs' luminous efficiency, the pattern units of PSS become more complicated, and the effect of complicated geometrical features is almost impossible to study systematically by experiments only. By employing our new method, the influence of pattern parameters can be systematically studied, and various novel patterns are designed and optimized within a reasonable time span, with great improvement in LEDs' light extraction efficiency (LEE). Clearly, PSS pattern design with such a method deserves particular attention. We foresee that GaN-based LEDs on these newly designed PSSs will achieve more progress in the coming years.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFB0400601the National Natural Science Foundation of China under Grant Nos 61704069,11674147,61604066,51602141 and 11604137
文摘In GaN-based green light-emitting diodes(LEDs) with different green quantum well numbers grown on Si(111)substrates by metal organic chemical vapor deposition are investigated. It is observed that V-shaped pits appear in the AFM images with the green quantum well number increasing from 5 to 9, and results in larger reverse-bias leakage current. Meanwhile, in the case of the sample with the number from 5 to 7 then to 9, the external quantum efficiency increases firstly, and then decreases. These phenomena may be related to the size of V-shaped pits in the active area and the distribution of electrons and holes in the active area caused by V-shaped pits. The optimal number of green quantum wells is determined to be 7.
基金Project supported by the National Natural Science Foundation of China (Grant No.61176043)the Special Funds for Strategic and Emerging Industries Projects of Guangdong Province,China (Grant Nos.2010A081002005,2011A081301003,and 2012A080304016)
文摘The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior optical and electrical performance such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-InA1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50602018)the Science and Technology Program of Guangdong Province,China (Grant Nos. 2010B090400456,2009B011100003,and 2010A081002002)the Science and Technology Program of Guangzhou City,China (Grant No. 2010U1-D00191)
文摘InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole injection layers show superior optical and electrical performance, such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-A1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant No.50602018)the Science and Technology Program of Guangdong Province,China (Grant Nos.2010B090400456,2009B011100003,and 2010A081002002)the Science and Technology Program of Guangzhou City,China (Grant No.2010U1-D00191)
文摘InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).
基金supported by the National Natural Science Foundation of China (Grant No. 50602018)the Science and Technology Program of Guangdong Province of China (Grant Nos. 2010B090400456, 2009B011100003, and 2010A081002002)the Scienceand Technology Program of Guangzhou City, China (Grant No. 2010U1-D00191)
文摘InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure with dip- aped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on Lmerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed ainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).
基金supported by the National Natural Science Foundation of China (Grant No 50672007)Program for the New Century Excellent Talents of China (Grant No NCET-06-0082)the National Basic Research Program of China (Grant No2007CB936202)
文摘We have synthesized Ca2Si5N8:Eu^2+ phosphor through a solid-state reaction and investigated its structural and luminescent properties. Our Rietveld refinement of the crystal structure of Ca1.9Eu0.1Si5N8 reveals that Eu atoms substituting for Ca atoms occupy two crystallographic positions. Between 10 K and 300 K, Ca2Si5N8:Eu^2+ phosphor shows a broad red emission band centred at -1.97 eV-2.01 eV. The gravity centre of the excitation band is located at 3.0 eV 3.31 eV. The centroid shift of the 5d levels of Eu^2+ is determined to be -1.17 eV, and the red-shift of the lowest absorption band to be - 0.54 eV due to the crystal field splitting. We have analysed the temperature dependence of PL by using a configuration coordinate model. The Huang-Rhys parameter S = 6.0, the phonon energy hv = 52 meV, and the Stokes shift △S = 0.57 eV are obtained. The emission intensity maximum occurring at -200 K can be explained by a trapping effect. Both photoluminescence (PL) emission intensity and decay time decrease with temperature increasing beyond 200 K due to the non-radiative process.
基金supported by the National Natural Science Foundation of China(Grant No.61176043)the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong Province,China(Grant Nos.2010A081002005,2011A081301003,and 2012A080304016)the Youth Foundation of South China Normal University(Grant No.2012KJ018)
文摘Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.
文摘With andromonoecious<i><span> Momordica charantia </span></i><span>L.</span><span> </span><span>(bitter gourd) as material, three light qualities</span><span> </span><span>(50 μmol·m</span><sup><span style="vertical-align:super;">-2</span></sup><span>·s</span><sup><span style="vertical-align:super;">-1</span></sup><span>) including white LED light</span><span> </span><span>(WL), blue monochromatic light (B,</span><span> </span><span>465 nm), and red monochromatic light (R, 650 nm) were carried out to investigate their effects on seed germination, physiological and biochemical parameters, sex differentiation and photosynthetic characteristics of bitter gourd. The results showed that compared to the WL treatment, the R treatment significantly promoted seed germination, seedling height elongation and soluble sugar content, the B treatment significantly increased seedling stem diameter, reducing sugar content and soluble protein content, the R and B treatments both significantly reduced sucrose content, but their POD activity showed no significant difference. Compared with the R treatment, the B treatment significantly increased the total female flower number and female flower nod ratio in 30 nods of main stems. The study of photosynthetic characteristics found that the R and B treatments could effectively increase the </span><span>stomata</span><span>l conductance (GS) of leaves, significantly improved the net photosynthetic rate</span><span> </span><span>(Pn) compared to the WL treatment, and the effect of the B treatment was better. Compared to the R and WL treatments, the B treatment increased the maximum photosynthetic rate (P</span><sub><span style="vertical-align:sub;">max</span></sub><span>),</span><span> </span><span>apparent quantum efficiency</span><span> </span><span>(AQE) and light saturation point</span><span> </span><span>(LSP), and reduced the dark respiration rate (Rd) and light compensation point</span><span> </span><span>(LCP) of the leaves. Fit light response curves showed that the adaptability and utilization of weak light in bitter gourd were middle or below, but it showed higher adaptability and utilization of strong light. Thus, it suggests that </span><i><span>Momordica charantia</span></i><span> is a typical sun plan with lower Rd. In summary, it is concluded that blue light has a positive effect on the seed germination, seedling growth, sex differentiation and improving the photosynthetic performance, and this will lay the foundation for artificially regulating optimum photosynthesis using specific LEDs wavelength, and help to elucidate the relationship how light quality influences the sex differentiation of plant.</span>
基金supported by the National Key R&D Program of China(Grant Nos.2016YFB0400800,2016YFB0400801,and 2016YFB0400802)the National Natural Science Foundation of China(Grant No.61634005)the Fundamental Research Funds for the Central Universities,China(Grant No.JBZ171101)
文摘The novel AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) with double superlattice structure(DSL) are proposed and demonstrated by numerical simulation and experimental verification. The DSL consists of 30-period Mg modulation-doped p-AlGaN/u-GaN superlattice(SL) and 4-period p-AlGaN/p-GaN SL electron blocking layer, which are used to replace the p-type GaN layer and electron blocking layer of conventional UV-LEDs, respectively. Due to the special effects and interfacial stress, the AlGaN/GaN short-period superlattice can reduce the acceptor ionization energy of the ptype regions, thereby increasing the hole concentration. Meanwhile, the multi-barrier electron blocking layers are effective in suppressing electron leakage and improving hole injection. Experimental results show that the enhancements of 22.5%and 37.9% in the output power and external quantum efficiency at 120 m A appear in the device with double superlattice structure.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61334002,61474091,61404097,61574110and 61574112the 111 Project of China under Grant No B12026the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry of China under Grant No JY0600132501
文摘The transport mechanisms of the reverse leakage current in the UV light-emitting diodes (380nm) are investi- gated by the temperature-dependent current-voltage measurement first. Three possible transport mechanisms, the space-limited-charge conduction, the variable-range hopping and the Poole-Frenkel emission, are proposed to explain the transport process of the reverse leakage current above 295 K, respectively. With the in-depth investigation, the former two transport mechanisms are excluded. It is found that the experimental data agree well with the Poole Frenkel emission model. Furthermore, the activation energies of the traps that cause the reverse leakage current are extracted, which are 0.05eV, 0.09eV, and 0.11 eV, respectively. This indicates that at least three types of trap states are located below the bottom of the conduction band in the depletion region of the UV LEDs.
基金supported by the National Natural Science Foundation of China (Grant No. 51172079)the Science and Technology Program of Guangdong Province,China (Grant Nos. 2010B090400456 and 2010A081002002)the Science and Technology Program of Guangzhou City, China (Grant No. 2011J4300018)
文摘GaN/InGaN superlattice barriers are used in InGaN-based light-emitting diodes (LEDs). The electrostatic field in the quantum wells, electron hole wavefunction overlap, carrier concentration, spontaneous emission spectrum, light-current performance curve, and internal quantum efficiency are numerically investigated using the APSYS simulation software. It is found that the structure with GaN/InGaN superlattice barriers shows improved light output power, and lower current leakage and efficiency droop. According to our numerical simulation and analysis, these improvements in the electrical and optical characteristics are mainly attributed to the alleviation of the electrostatic field in the active region.
文摘The advantages of a blue InGaN-based light-emitting diode with a p-InGaN layer inserted in the GaN barriers is studied. The carrier concentration in the quantum well, radiative recombination rate in the active region, output power, and internal quantum efficiency are investigated. The simulation results show that the InGaN-based light-emitting diode with a p-InGaN layer inserted in the barriers has better performance over its conventional counterpart and the light emitting diode with p-GaN inserted in the barriers. The improvement is due to enhanced Mg acceptor activation and enhanced hole injection into the quantum wells.
基金Project supported by the National High Technology Research and Development Program of China (Grant Nos.2011AA03A112,2011AA03A106,and 2013AA03A101)the National Natural Science Foundation of China (Grant Nos.11204360,61210014,and 61078046)+2 种基金the Science and Technology Innovation Program of Department of Education of Guangdong Province,China (Grant No.2012CXZD0017)the Industry–Academia Research Union Special Fund of Guangdong Province,China (Grant No.2012B091000169)the Science and Technology Innovation Platform of Industry–Academia Research Union of Guangdong Province–Ministry Cooperation Special Fund,China (Grant No.2012B090600038)
文摘We use a simple and controllable method to fabricate GaN-based light-emitting diodes (LEDs) with 22° undercut sidewalls by the successful implementation of the inductively coupled plasma reactive ion etching (ICP-RIE). Our exper- iment results show that the output powers of the LEDs with 22° undercut sidewalls are 34.8 rnW under a 20-mA current injection, 6.75% higher than 32.6 mW, the output powers of the conventional LEDs under the same current injection.
基金Project supported by the National Natural Science Foundation of China(Grant No.61334009)the National High Technology Research and Development Program of China(Grant Nos.2015AA03A101 and 2014BAK02B08)+1 种基金China International Science and Technology Cooperation Program(Grant No.2014DFG62280)the"Import Outstanding Technical Talent Plan"and"Youth Innovation Promotion Association Program"of the Chinese Academy of Sciences
文摘Progress with GaN-based light emitting diodes (LEDs) that incorporate nanostructures is reviewed, especially the re- cent achievements in our research group. Nano-patterned sapphire substrates have been used to grow an A1N template layer for deep-ultraviolet (DUV) LEDs. One efficient surface nano-texturing technology, hemisphere-cones-hybrid nanostruc- tures, was employed to enhance the extraction efficiency of InGaN flip-chip LEDs. Hexagonal nanopyramid GaN-based LEDs have been fabricated and show electrically driven color modification and phosphor-free white light emission because of the linearly increased quantum well width and indium incorporation from the shell to the core. Based on the nanostruc- tures, we have also fabricated surface plasmon-enhanced nanoporous GaN-based green LEDs using AAO membrane as a mask. Benefitting from the strong lateral SP coupling as well as good electrical protection by a passivation layer, the EL intensity of an SP-enhanced nanoporous LED was significantly enhanced by 380%. Furthermore, nanostructures have been used for the growth of GaN LEDs on amorphous substrates, the fabrication of stretchable LEDs, and for increasing the 3-dB modulation bandwidth for visible light communication.
文摘Background:Pterygium is a sun-related ocular surface disease secondary to ultraviolet(UV)radiation exposure.Outdoor occupational UV exposure is known to occur secondary to sun exposure.We present a unique case of pterygium associated with indoor occupational light-emitting diode(LED)exposure not previously described in the literature.Case Description:A mobile phone repairer presented with blurred vision and a superotemporal pterygium of his dominant left eye associated with a magnifying glass LED work lamp was diagnosed.This was excised routinely with conjunctival autografting to the defect.Histopathology confirmed benign pterygium and recovery was uncomplicated with resolution of blur.Conclusions:The development of pterygium in our patient may have arisen due to the LED lamp’s wavelengths possibly falling within the UV as well as the upper end of the visible light radiation spectrum.Given the increasing reliance on LED light sources in modern life,ocular conditions arising from exposure to these radiation sources may now need to be listed in the differential diagnoses of patients with pterygium.Appropriate UV protection counselling for these types of lights may also now need to be considered.
基金supported by the National Natural Science Foundation of China (Grant No. 61176043)the Doctoral Fund of Ministry of Educationof China (Grant No. 20060574007)+3 种基金the Production and Research Projectof Guangdong Province and Ministry of Education (Grant Nos.2009B090300338,2010B090400192)the LED Industry Project of Special Funds of Strategic Emerging Industries of Guangdong Province in 2011(Grant No. 2010A081002005)the LED Industry Project of Special Fundsof Strategic Emerging Industries of Guangdong Province in 2012 (GrantNo. 2011A081301003)the Science and Technology Program of Guangzhou Huadu District (Grant Nos. HD10CXY-G002,HD10CXY-G013)
文摘In this work,GaN-based light-emitting diodes(LEDs) with a p-GaN/i-InGaN short-period superlattice(SPSL) structure,p-GaN and undoped GaN last quantum barrier(LQB) have been numerically investigated by using the APSYS simulation software.It has been found that the efficiency droop is significantly improved when the undoped GaN LQB in a typical blue LED is replaced by a p-GaN/i-InGaN SPSL structure.According to the simulation analysis,using the p-GaN/i-InGaN SPSL structure as LQB is beneficial to increasing the hole injection efficiency and decreasing the electron current leakage.Therefore,the radiative recombination and optical power are enhanced.