Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency a...Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency and rapid recombination of photoexcited carriers, leading to poor photodetection performance. Here, inspired by the photogating effect, we demonstrated a highly sensitive photodetector based on graphene/WSe_(2) vertical heterostructure where the WSe_(2) layer acts as both the light absorption layer and the localized grating layer. The graphene conductive channel is induced to produce more carriers by capacitive coupling. Due to the strong light absorption and high external quantum efficiency of multilayer WSe_(2), as well as the high carrier mobility of graphene, a high photocurrent is generated in the vertical heterostructure. As a result, the photodetector exhibits ultra-high responsivity of 3.85×10~4A/W and external quantum efficiency of 1.3 × 10~7%.This finding demonstrates that photogating structures can effectively enhance the sensitivity of graphene-based photodetectors and may have great potential applications in future optoelectronic devices.展开更多
The inherent catalytic anisotropy of two-dimensional(2D) materials has limited the enhancement of LiO_(2) batteries(LOBs) performance due to the significantly different adsorption energies on 2D and edge surfaces.Tuni...The inherent catalytic anisotropy of two-dimensional(2D) materials has limited the enhancement of LiO_(2) batteries(LOBs) performance due to the significantly different adsorption energies on 2D and edge surfaces.Tuning the adsorption strength in 2D materials to the reaction intermediates is essential for achieving high-performance LOBs.Herein,a MnS/MoS_(2) heterostructure is designed as a cathode catalyst by adjusting the adsorption behavior at the surface.Different from the toroidal-like discharge products on the MoS_(2) cathode,the MnS/MoS_(2) surface displays an improved adsorption energy to reaction species,thereby promoting the growth of the film-like discharge products.MnS can disturb the layer growth of MoS_(2),in which the stack edge plane features a strong interaction with the intermediates and limits the growth of the discharge products.Experimental and theoretical results confirm that the MnS/MoS_(2) heterostructure possesses improved electron transfer kinetics at the interface and plays an important role in the adsorption process for reaction species,which finally affects the morphology of Li_2O_(2),In consequence,the MnS/MoS_(2) heterostructure exhibits a high specific capacity of 11696.0 mA h g^(-1) and good cycle stability over 1800 h with a fixed specific capacity of 600 mA h g^(-1) at current density of100 mA g^(-1) This work provides a novel interfacial engineering strategy to enhance the performance of LOBs by tuning the adsorption properties of 2D materials.展开更多
Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S...Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy.Efficient charge transfer from ZnIn_(2)S_(4) to WSe_(2)was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and2D face-to-face contact.As a result,the prepared WSe_(2)/ZnIn_(2)S_(4) heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h)was achieved with an apparent quantum yield of 45.7%at 420 nm.The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future.展开更多
Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and u...Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs.展开更多
The photocatalytic activity of catalysts depends on the energy-harvesting ability and the separation or transport of photogenerated carriers.The light absorption capacity of graphitic carbon nitride(g-C_(3)N_(4))-base...The photocatalytic activity of catalysts depends on the energy-harvesting ability and the separation or transport of photogenerated carriers.The light absorption capacity of graphitic carbon nitride(g-C_(3)N_(4))-based composites can be enhanced by adjusting the surface plasmon resonance(SPR)of noble metal nanoparticles(e.g.,Cu,Au,and Pd)in the entire visible region.Adjustments can be carried out by varying the nanocomponents of the materials.The SPR of noble metals can enhance the local electromagnetic field and improve interband transition,and resonant energy transfer occurs from plasmonic dipoles to electron-hole pairs via near-field electromagnetic interactions.Thus,noble metals have emerged as relevant nanocomponents for g-C_(3)N_(4) used in CO_(2) photoreduction and water splitting.Herein,recent key advances in noble metals(either in single atom,cluster,or nanoparticle forms)and composite photocatalysts based on inorganic or organic nanocomponent-incorporated g-C_(3)N_(4) nanosheets are systematically discussed,including the applications of these photocatalysts,which exhibit improved photoinduced charge mobility in CO_(2) photoconversion and H2 production.Issues related to the different types of multi-nanocomponent heterostructures(involving Schottky junctions,Z-/S-scheme heterostructures,noble metals,and additional semiconductor nanocomponents)and the adjustment of dimensionality of heterostructures(by incorporating noble metal nanoplates on g-C_(3)N_(4) forming 2D/2D heterostructures)are explored.The current prospects and possible challenges of g-C_(3)N_(4) composite photocatalysts incorporated with noble metals(e.g.,Au,Pt,Pd,and Cu),particularly in water splitting,CO_(2) reduction,pollution degradation,and chemical conversion applications,are summarized.展开更多
With the advantages of the multiple oxidation states and highly open crystal structures,vanadium-based composites have been considered as the promising cathode materials for aqueous zinc-ion batteries(ZIBs).However,th...With the advantages of the multiple oxidation states and highly open crystal structures,vanadium-based composites have been considered as the promising cathode materials for aqueous zinc-ion batteries(ZIBs).However,the inherent inferior electrical conductivity,low specific surface area,and sluggish Zn^(2+)diffusion kinetics of the traditional vanadium-based oxides have greatly impeded their development.Herein,a novel hierarchical porous spindle-shaped Ag-V_(2)O_(5) with unique heterostructures was rationally designed via a simple MOF-assisted synthetic method and applied as stable cathode for aqueous ZIBs.The high specific surface area and hierarchically porous superstructures endowed Ag-V_(2)O_(5) with sufficient electrochemical active sites and shortened the diffusion pathways of Zn^(2+),which was beneficial to accelerate the reversible transport of Zn^(2+)and deliver a high specific capacity(426 mA h g^(-1) at 0.1 A g^(-1) and 96.5%capacity retention after 100 cycles).Meanwhile,the self-built-in electric fields at the heterointerface of Ag-V_(2)O_(5) electrode could strengthen the synergistic coupling interaction between Ag and V_(2)O_(5),which can effectively enhance the electric conductivity and maintain the structural integrity,resulting in superb rate capability(326.1 mA h g^(-1) at 5.0 A g^(-1))and remarkable cycling stability(89.7%capacity retention after 2000 cycles at 5.0 A g^(-1)).Moreover,the reversible Zn^(2+)storage mechanism was further investigated and elucidated by kinetics analysis and DFT calculations.展开更多
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
Two-dimensional layered material/semiconductor heterostructures have emerged as a category of fascinating architectures for developing highly efficient and low-cost photodetection devices.Herein,we present the constru...Two-dimensional layered material/semiconductor heterostructures have emerged as a category of fascinating architectures for developing highly efficient and low-cost photodetection devices.Herein,we present the construction of a highly efficient flexible light detector operating in the visible-near infrared wavelength regime by integrating a PdTe2 multilayer on a thin Si film.A representative device achieves a good photoresponse performance at zero bias including a sizeable current on/off ratio exceeding 105,a decent responsivity of~343 mA/W,a respectable specific detectivity of~2.56×10^(12)Jones,and a rapid response time of 4.5/379μs,under 730 nm light irradiation.The detector also displays an outstanding long-term air stability and operational durability.In addition,thanks to the excellent flexibility,the device can retain its prominent photodetection performance at various bending radii of curvature and upon hundreds of bending tests.Furthermore,the large responsivity and rapid response speed endow the photodetector with the ability to accurately probe heart rate,suggesting a possible application in the area of flexible and wearable health monitoring.展开更多
MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Here...MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Herein,a unique MoS_(2)/FeS_(2)/C heterojunction with abundant defects and hollow structure(MFCHHS)was constructed.The synergy of defect engineering in MoS_(2),FeS_(2),and the carbon layer of MFCHHS with a larger specific surface area provides multiple storage sites of Na^(+)corresponding to the surface-controlled process.The MoS_(2)/FeS_(2)/C heterostructure and rich defects in MoS_(2) and carbon layer lower the Na^(+) diffusion energy barrier.Additionally,the construction of MoS_(2)/FeS_(2) heterojunction promotes electron transfer at the interface,accompanying with excellent conductivity of the carbon layer to facilitate reversible electrochemical reactions.The abundant defects and mismatches at the interface of MoS_(2)/FeS_(2) and MoS_(2)/C heterojunctions could relieve lattice stress and volume change sequentially.As a result,the MFCHHS anode exhibits the high capacity of 613.1 mA h g^(-1)at 0.5 A g^(-1) and 306.1 mA h g^(-1) at 20 A g^(-1).The capacity retention of 85.0%after 1400 cycles at 5.0 A g^(-1) is achieved.The density functional theory(DFT)calculation and in situ transmission electron microscope(TEM),Raman,ex-situ X-ray photon spectroscopy(XPS)studies confirm the low volume change during intercalation/deintercalation process and the efficient Na^(+)storage in the layered structure of MoS_(2) and carbon layer,as well as the defects and heterostructures in MFCHHS.We believe this work could provide an inspiration for constructing heterojunction with abundant defects to foster fast electron and Na^(+) diffusion kinetics,resulting in excellent rate capability and cycling stability.展开更多
2D MXenes are highly attractive for fabricating high-precision gas sensors operated at room temperature(RT)due to their high surface-to-volume ratio.However,the limited selectivity and low sensitivity are still long-s...2D MXenes are highly attractive for fabricating high-precision gas sensors operated at room temperature(RT)due to their high surface-to-volume ratio.However,the limited selectivity and low sensitivity are still long-standing challenges for their further applications.Herein,the self-assembly of 0D-2D heterostructure for highly sensitive NO_(2) detection was achieved by integrating ZnO nanoparticles on Ti_(3)C_(2)Tx MXene-derived TiO_(2) nanosheets(designated as ZnO@MTiO_(2)).ZnO nanoparticles can not only act as spacers to prevent the restacking of MTiO_(2) nanosheets and ensure effective transfer for gas molecules,but also enhance the sensitivity of the sensor the through trapping effect on electrons.Meanwhile,MTiO_(2) nanosheets facilitate gas diffusion for rapid sensor response.Benefiting from the synergistic effect of individual components,the ZnO@MTiO_(2)0D-2D heterostructure-based sensors revealed remarkable sensitivity and excellent selectivity to low concentration NO_(2) at RT.This work may facilitate the sensing application of MXene derivative and provide a new avenue for the development of high-performance gas sensors in safety assurance and environmental monitoring.展开更多
To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a st...To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a strategy to effectively capture soluble lithium polysulfide intermediates and promote their conversion reaction by integrating highly polar metal oxides with catalytically active metals sulfides.However,to fully exploit the outstanding properties of heterostructure-based composites,their detailed structure and interfacial contacts should be designed rationally.Herein,optimally arranged TiO_(2)and MoS_(2)-based heterostructures(TiO_(2)@MoS_(2)) are fabricated on carbon cloth as a multifunctional interlayer to efficiently trap polysulfide intermediates and accelerate their redox kinetics.Owing to the synergistic effects between TiO_(2)and MoS_(2)and the uniform heterointerface distribution that induces the ideally oriented built-in electric field,Li-S batteries with TiO_(2)@MoS_(2)interlayers exhibit high rate capability(601 mA h g^(-1)at 5 C),good cycling stability(capacity-fade rate of 0.067% per cycle over 500 cycles at2 C),and satisfactory areal capacity(5.2 mA h cm^(-2)) under an increased sulfur loading of 5.2 mg cm^(-2).Moreover,by comparing with a MoS_(2)@TiO_(2)interlayer composed of reversely arranged heterostructures,the effect of the built-in electric field’s direction on the electrocatalytic reactions of polysulfide intermediates is thoroughly investigated for the first time.The superior electrocatalytic activities of the rationally arranged TiO_(2)@MoS_(2)interlayer demonstrate the importance of optimizing the built-in electric field of heterostructures for producing high-performance Li-S batteries.展开更多
Photodetectors based on two-dimensional materials have attracted much attention because of their unique structure and outstanding performance.The response speed of single ReS_(2)photodetector is slow exceptionally,the...Photodetectors based on two-dimensional materials have attracted much attention because of their unique structure and outstanding performance.The response speed of single ReS_(2)photodetector is slow exceptionally,the heterostructure could improves the response speed of ReS_(2)-based photodetector,but the photodetectors responsivity is reduced greatly,which restricts the development of ReS_(2).In this paper,a vertically structured ReS_(2)/SnS_(2)van der Waals heterostructure photodetectors is prepared,using ReS_(2)as the transport layer and SnS_(2)as the light absorbing layer to regulate the channel current.The device has an ultra-high photoconductive gain of 10^(10),which exhibits an ultra-high responsivity of4706 A/W under 365-nm illumination and response speed in seconds,and has an ultra-high external quantum efficiency of1.602×10^(6)%and a high detectivity of 5.29×10^(12)jones.The study for ReS_(2)-based photodetector displays great potential for developing future optoelectronic devices.展开更多
Type-Ⅱband alignment can realize the efficient charge transfer and separation at the semiconductor heterointerface,which results in photoluminescence(PL)quenching.Recently,several researches demonstrated great enhanc...Type-Ⅱband alignment can realize the efficient charge transfer and separation at the semiconductor heterointerface,which results in photoluminescence(PL)quenching.Recently,several researches demonstrated great enhancement of localized PL at the interface of type-Ⅱtwo-dimensional(2D)heterostructure.However,the dominant physical mechanism of this enhanced PL emission has not been well understood.In this work,we symmetrically study the exciton dynamics of type-Ⅱlateral heterostructures of monolayer MoS_(2) and WS_(2) at room temperatures.The strong PL enhancement along the one-dimensional(1D)heterointerface is associated with the trion emission of the WS_(2) shell,while a dramatic PL quenching of neutral exciton is observed on the MoS_(2) core.The enhanced quantum yield of WS2trion emission can be explained by charge-transfer-enhanced photoexcited carrier dynamics,which is facilitated by resonance hole transfer from MoS_(2) side to WS_(2) side.This work sheds light on the 1D exciton photophysics in lateral heterostructures,which has the potential to lead to new concepts and applications of optoelectronic device.展开更多
The practical application of Lithium-Sulfur batteries largely depends on highly efficient utilization and conversion of sulfur under the realistic condition of high-sulfur content and low electrolyte/sulfur ratio.Rati...The practical application of Lithium-Sulfur batteries largely depends on highly efficient utilization and conversion of sulfur under the realistic condition of high-sulfur content and low electrolyte/sulfur ratio.Rational design of heterostructure electrocatalysts with abundant active sites and strong interfacial electronic interactions is a promising but still challenging strategy for preventing shuttling of polysulfides in lithium-sulfur batteries.Herein,ultrathin nonlayered NiO/Ni_(3)S_(2)heterostructure nanosheets are developed through topochemical transformation of layered Ni(OH)_(2)templates to improve the utilization of sulfur and facilitate stable cycling of batteries.As a multifunction catalyst,NiO/Ni_(3)S_(2)not only enhances the adsorption of polysulfides and shorten the transport path of Li ions and electrons but also promotes the Li_(2)S formation and transformation,which are verified by both in-situ Raman spectroscopy and electrochemical investigations.Thus,the cell with NiO/Ni_(3)S_(2)as electrocatalyst delivers an area capacity of 4.8 mAh cm^(-2)under the high sulfur loading(6 mg cm^(-2))and low electrolyte/sulfur ratio(4.3 pL mg^(-1)).The strategy can be extended to 2D Ni foil,demonstrating its prospects in the construction of electrodes with high gravimetric/volumetric energy densities.The designed electrocatalyst of ultrathin nonlayered heterostructure will shed light on achieving high energy density lithium-sulfur batteries.展开更多
Vertically stacked heterostructures have received extensive attention because of their tunable electronic structures and outstanding optical properties.In this work,we study the structural,electronic,and optical prope...Vertically stacked heterostructures have received extensive attention because of their tunable electronic structures and outstanding optical properties.In this work,we study the structural,electronic,and optical properties of vertically stacked GaS-SnS_(2)heterostructure under the frame of density functional theory.We find that the stacked GaS-SnS_(2)heterostructure is a semiconductor with a suitable indirect band gap of 1.82 eV,exhibiting a type-Ⅱband alignment for easily separating the photo-generated carriers.The electronic properties of GaS-SnS_(2)hetero structure can be effectively tuned by an external strain and electric field.The optical absorption of GaS-SnS_(2)heterostructure is more enhanced than those of the GaS monolayer and SnS_(2)monolayer in the visible light region.Our results suggest that the GaS-SnS_(2)hetero structure is a promising candidate for the photocatalyst and photoelectronic devices in the visible light region.展开更多
Two-dimensional(2D)/quasi-2D organic-inorganic halide perovskites are regarded as naturally formed multiple quantum wells with inorganic layers isolated by long organic chains,which exhibit layered structure,large exc...Two-dimensional(2D)/quasi-2D organic-inorganic halide perovskites are regarded as naturally formed multiple quantum wells with inorganic layers isolated by long organic chains,which exhibit layered structure,large exciton binding energy,strong nonlinear optical effect,tunable bandgap via changing the layer number or chemical composition,improved environmental stability,and excellent optoelectronic properties.The extensive choice of long organic chains endows 2D/quasi-2D perovskites with tunable electron-phonon coupling strength,chirality,or ferroelectricity properties.In particular,the layered nature of 2D/quasi-2D perovskites allows us to exfoliate them to thin plates to integrate with other materials to form heterostructures,the fundamental structural units for optoelectronic devices,which would greatly extend the functionalities in view of the diversity of 2D/quasi-2D perovskites.In this paper,the recent achievements of 2D/quasi-2D perovskite-based heterostructures are reviewed.First,the structure and physical properties of 2D/quasi-2D perovskites are introduced.We then discuss the construction and characterizations of 2D/quasi-2D perovskite-based heterostructures and highlight the prominent optical properties of the constructed heterostructures.Further,the potential applications of 2D/quasi-2D perovskite-based heterostructures in photovoltaic devices,light emitting devices,photodetectors/phototransistors,and valleytronic devices are demonstrated.Finally,we summarize the current challenges and propose further research directions in the field of 2D/quasi-2D perovskite-based heterostructures.展开更多
The Cu2S/tetrapod-like ZnO whisker(T-ZnOw) heterostructures were successfully synthesized via a simple polyol process employing the poly(vinyl pyrrolidone)(PVP) as a surfactant.The as-prepared heterostructures w...The Cu2S/tetrapod-like ZnO whisker(T-ZnOw) heterostructures were successfully synthesized via a simple polyol process employing the poly(vinyl pyrrolidone)(PVP) as a surfactant.The as-prepared heterostructures were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FTIR).The photocatalytic properties of Cu2S/T-ZnOw nanocomposites synthesized with different PVP concentrations were evaluated by photodegradation of methyl orange(MO) under UV irradiation.The results show that the Cu2S/T-ZnOw nanocomposites exhibit remarkable improved photocatalytic property compared with the pure T-ZnOw.The sample prepared with 3.0 g/L PVP shows an excellent photocatalytic property and the highest photodegradation rate of MO is 97% after UV irradiation for 120 min.Besides,the photocatalytic activity of the photocatalyst has no evident decrease even after four cycles,which demonstrates that the Cu2S/T-ZnOw photocatalyst exhibits an excellent photostability.Moreover,the photocatalytic mechanism of the Cu2S/T-ZnOw nanocomposites was also discussed.展开更多
Van der Waals heterostructures(vdWHs) are showing considerable potential in both fundamental exploration and practical applications. Built upon the synthetic successes of(two-dimensional) 2D materials, several synthet...Van der Waals heterostructures(vdWHs) are showing considerable potential in both fundamental exploration and practical applications. Built upon the synthetic successes of(two-dimensional) 2D materials, several synthetic strategies of vdWHs have been developed,allowing the convenient fabrication of diverse vdWHs with decent controllability, quality, and scalability. This review first summarizes the current state of the art in synthetic strategies of vdWHs, including physical combination, deposition, solvothermal synthesis, and synchronous evolution. Then three major applications and their representative vdWH devices have been reviewed, including electronics(tunneling field effect transistors and 2D contact),optoelectronics(photodetector), and energy conversion(electrocatalysts and metal ion batteries), to unveil the potentials of vdWHs in practical applications and provide the general design principles of functional vdWHs for different applications. Besides, moiré superlattices based on vdWHs are discussed to showcase the importance of vdWHs as a platform for novel condensed matter physics. Finally, the crucial challenges towards ideal vdWHs with high performance are discussed, and the outlook for future development is presented. By the systematical integration of synthetic strategies and applications, we hope this review can further light up the rational designs of vdWHs for emerging applications.展开更多
Compared with the traditional heteroatom doping,employing heterostructure is a new modulating approach for carbon-based electrocatalysts.Herein,a facile ball milling-assisted route is proposed to synthesize porous car...Compared with the traditional heteroatom doping,employing heterostructure is a new modulating approach for carbon-based electrocatalysts.Herein,a facile ball milling-assisted route is proposed to synthesize porous carbon materials composed of abundant graphene/hexagonal boron nitride(G/h-BN)heterostructures.Metal Ni powder and nanoscale h-BN sheets are used as a catalytic substrate/hard template and“nucleation seed”for the formation of the heterostructure,respectively.As-prepared G/h-BN heterostructures exhibit enhanced electrocatalytic activity toward H_(2)O_(2) generation with 86%-95%selectivity at the range of 0.45-0.75 V versus reversible hydrogen electrode(RHE)and a positive onset potential of 0.79 versus RHE(defined at a ring current density of 0.3 mA cm^(-2))in the alkaline solution.In a flow cell,G/h-BN heterostructured electrocatalyst has a H_(2)O_(2) production rate of up to 762 mmol g_(catalyst)^(-1) h^(-1) and Faradaic efficiency of over 75%during 12 h testing,superior to the reported carbon-based electrocatalysts.The density functional theory simulation suggests that the B atoms at the interface of the G/h-BN heterostructure are the key active sites.This research provides a new route to activate carbon catalysts toward highly active and selective O_(2)-to-H_(2)O_(2) conversion.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.11974379)the National Key Basic Research and Development Program of China (Grant No.2021YFC2203400)Jiangsu Vocational Education Integrated Circuit Technology “Double-Qualified” Famous Teacher Studio (Grant No.2022-13)。
文摘Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency and rapid recombination of photoexcited carriers, leading to poor photodetection performance. Here, inspired by the photogating effect, we demonstrated a highly sensitive photodetector based on graphene/WSe_(2) vertical heterostructure where the WSe_(2) layer acts as both the light absorption layer and the localized grating layer. The graphene conductive channel is induced to produce more carriers by capacitive coupling. Due to the strong light absorption and high external quantum efficiency of multilayer WSe_(2), as well as the high carrier mobility of graphene, a high photocurrent is generated in the vertical heterostructure. As a result, the photodetector exhibits ultra-high responsivity of 3.85×10~4A/W and external quantum efficiency of 1.3 × 10~7%.This finding demonstrates that photogating structures can effectively enhance the sensitivity of graphene-based photodetectors and may have great potential applications in future optoelectronic devices.
基金supported by the National Natural Science Foundation of China (52173286, 52207249)Major basic research project of Natural Science Foundation of Shandong Province (ZR2023ZD12)+1 种基金the State Key Laboratory of Marine Resource Utilization in South China Sea (Hainan University) (MRUKF2023013)Open Program of Guangxi Key Laboratory of Information Materials (221024-K)。
文摘The inherent catalytic anisotropy of two-dimensional(2D) materials has limited the enhancement of LiO_(2) batteries(LOBs) performance due to the significantly different adsorption energies on 2D and edge surfaces.Tuning the adsorption strength in 2D materials to the reaction intermediates is essential for achieving high-performance LOBs.Herein,a MnS/MoS_(2) heterostructure is designed as a cathode catalyst by adjusting the adsorption behavior at the surface.Different from the toroidal-like discharge products on the MoS_(2) cathode,the MnS/MoS_(2) surface displays an improved adsorption energy to reaction species,thereby promoting the growth of the film-like discharge products.MnS can disturb the layer growth of MoS_(2),in which the stack edge plane features a strong interaction with the intermediates and limits the growth of the discharge products.Experimental and theoretical results confirm that the MnS/MoS_(2) heterostructure possesses improved electron transfer kinetics at the interface and plays an important role in the adsorption process for reaction species,which finally affects the morphology of Li_2O_(2),In consequence,the MnS/MoS_(2) heterostructure exhibits a high specific capacity of 11696.0 mA h g^(-1) and good cycle stability over 1800 h with a fixed specific capacity of 600 mA h g^(-1) at current density of100 mA g^(-1) This work provides a novel interfacial engineering strategy to enhance the performance of LOBs by tuning the adsorption properties of 2D materials.
基金financially supported by the National Natural Science Foundation of China (No.52106259)the Fundamental Research Funds for the Central Universities (2024MS013)Key Research and Development Program of Shaanxi (Program No.2022LL-JB-08)。
文摘Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy.Efficient charge transfer from ZnIn_(2)S_(4) to WSe_(2)was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and2D face-to-face contact.As a result,the prepared WSe_(2)/ZnIn_(2)S_(4) heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h)was achieved with an apparent quantum yield of 45.7%at 420 nm.The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2021QB055,ZR2023MB017,ZR2022JQ10)the National Natural Science Foundation of China(21901146,220781792,22274083)。
文摘Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs.
基金supported in part by the projects from the National Natural Science Foundation of China(No.51972145)Jinan Science&Technology Bureau,China(No.2021GXRC109)Science and Technology Program of the University of Jinan,China(No.XKY2118).
文摘The photocatalytic activity of catalysts depends on the energy-harvesting ability and the separation or transport of photogenerated carriers.The light absorption capacity of graphitic carbon nitride(g-C_(3)N_(4))-based composites can be enhanced by adjusting the surface plasmon resonance(SPR)of noble metal nanoparticles(e.g.,Cu,Au,and Pd)in the entire visible region.Adjustments can be carried out by varying the nanocomponents of the materials.The SPR of noble metals can enhance the local electromagnetic field and improve interband transition,and resonant energy transfer occurs from plasmonic dipoles to electron-hole pairs via near-field electromagnetic interactions.Thus,noble metals have emerged as relevant nanocomponents for g-C_(3)N_(4) used in CO_(2) photoreduction and water splitting.Herein,recent key advances in noble metals(either in single atom,cluster,or nanoparticle forms)and composite photocatalysts based on inorganic or organic nanocomponent-incorporated g-C_(3)N_(4) nanosheets are systematically discussed,including the applications of these photocatalysts,which exhibit improved photoinduced charge mobility in CO_(2) photoconversion and H2 production.Issues related to the different types of multi-nanocomponent heterostructures(involving Schottky junctions,Z-/S-scheme heterostructures,noble metals,and additional semiconductor nanocomponents)and the adjustment of dimensionality of heterostructures(by incorporating noble metal nanoplates on g-C_(3)N_(4) forming 2D/2D heterostructures)are explored.The current prospects and possible challenges of g-C_(3)N_(4) composite photocatalysts incorporated with noble metals(e.g.,Au,Pt,Pd,and Cu),particularly in water splitting,CO_(2) reduction,pollution degradation,and chemical conversion applications,are summarized.
基金supported by the China Academy of Space Technology Innovation fund(2017ZY601026)。
文摘With the advantages of the multiple oxidation states and highly open crystal structures,vanadium-based composites have been considered as the promising cathode materials for aqueous zinc-ion batteries(ZIBs).However,the inherent inferior electrical conductivity,low specific surface area,and sluggish Zn^(2+)diffusion kinetics of the traditional vanadium-based oxides have greatly impeded their development.Herein,a novel hierarchical porous spindle-shaped Ag-V_(2)O_(5) with unique heterostructures was rationally designed via a simple MOF-assisted synthetic method and applied as stable cathode for aqueous ZIBs.The high specific surface area and hierarchically porous superstructures endowed Ag-V_(2)O_(5) with sufficient electrochemical active sites and shortened the diffusion pathways of Zn^(2+),which was beneficial to accelerate the reversible transport of Zn^(2+)and deliver a high specific capacity(426 mA h g^(-1) at 0.1 A g^(-1) and 96.5%capacity retention after 100 cycles).Meanwhile,the self-built-in electric fields at the heterointerface of Ag-V_(2)O_(5) electrode could strengthen the synergistic coupling interaction between Ag and V_(2)O_(5),which can effectively enhance the electric conductivity and maintain the structural integrity,resulting in superb rate capability(326.1 mA h g^(-1) at 5.0 A g^(-1))and remarkable cycling stability(89.7%capacity retention after 2000 cycles at 5.0 A g^(-1)).Moreover,the reversible Zn^(2+)storage mechanism was further investigated and elucidated by kinetics analysis and DFT calculations.
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.62275002,51902078,62074048,62075053)the Anhui Provincial Natural Science Foundation(2008085MF205)the Fundamental Research Funds for the Central Universities(JZ2020HGTB0051,PA2020GDKC0024).
文摘Two-dimensional layered material/semiconductor heterostructures have emerged as a category of fascinating architectures for developing highly efficient and low-cost photodetection devices.Herein,we present the construction of a highly efficient flexible light detector operating in the visible-near infrared wavelength regime by integrating a PdTe2 multilayer on a thin Si film.A representative device achieves a good photoresponse performance at zero bias including a sizeable current on/off ratio exceeding 105,a decent responsivity of~343 mA/W,a respectable specific detectivity of~2.56×10^(12)Jones,and a rapid response time of 4.5/379μs,under 730 nm light irradiation.The detector also displays an outstanding long-term air stability and operational durability.In addition,thanks to the excellent flexibility,the device can retain its prominent photodetection performance at various bending radii of curvature and upon hundreds of bending tests.Furthermore,the large responsivity and rapid response speed endow the photodetector with the ability to accurately probe heart rate,suggesting a possible application in the area of flexible and wearable health monitoring.
基金the National Natural Science Foundation of China(NSFC)(22105059,22279112)the Talent Introduction Program of Hebei Agricultural University(YJ201810)+5 种基金the Youth Topnotch Talent Foundation of Hebei Provincial Universities(BJK2022023)the Natural Science Foundation of Hebei Province(B2022203018)the Fok Ying-Tong Education Foundation of China(171064)the Natural Science Foundation of Shandong Province,China(ZR2021QE192)the China Postdoctoral Science Foundation(2018M630747)the 333 Talent Program of Hebei Province(C20221018)for their support。
文摘MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Herein,a unique MoS_(2)/FeS_(2)/C heterojunction with abundant defects and hollow structure(MFCHHS)was constructed.The synergy of defect engineering in MoS_(2),FeS_(2),and the carbon layer of MFCHHS with a larger specific surface area provides multiple storage sites of Na^(+)corresponding to the surface-controlled process.The MoS_(2)/FeS_(2)/C heterostructure and rich defects in MoS_(2) and carbon layer lower the Na^(+) diffusion energy barrier.Additionally,the construction of MoS_(2)/FeS_(2) heterojunction promotes electron transfer at the interface,accompanying with excellent conductivity of the carbon layer to facilitate reversible electrochemical reactions.The abundant defects and mismatches at the interface of MoS_(2)/FeS_(2) and MoS_(2)/C heterojunctions could relieve lattice stress and volume change sequentially.As a result,the MFCHHS anode exhibits the high capacity of 613.1 mA h g^(-1)at 0.5 A g^(-1) and 306.1 mA h g^(-1) at 20 A g^(-1).The capacity retention of 85.0%after 1400 cycles at 5.0 A g^(-1) is achieved.The density functional theory(DFT)calculation and in situ transmission electron microscope(TEM),Raman,ex-situ X-ray photon spectroscopy(XPS)studies confirm the low volume change during intercalation/deintercalation process and the efficient Na^(+)storage in the layered structure of MoS_(2) and carbon layer,as well as the defects and heterostructures in MFCHHS.We believe this work could provide an inspiration for constructing heterojunction with abundant defects to foster fast electron and Na^(+) diffusion kinetics,resulting in excellent rate capability and cycling stability.
基金supported by the National Natural Science Foundation of China(No.52103308)the Natural Science Foundation of Jiangsu Province of China(No.BK20210826)+4 种基金Outstanding Youth Foundation of Jiangsu Province of China(No.BK20211548)National Key Research and Development Program of China(No.2017YFE0115900)Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University(No.YZ2020266)Lvyang Jinfeng Plan for Excellent Doctor of Yangzhou City,Special Funds for Self-Made Experimental Equipment of Yangzhou Universitythe Doctor of Suzhou University Scientific Research Foundation Project(No.2022BSK003).
文摘2D MXenes are highly attractive for fabricating high-precision gas sensors operated at room temperature(RT)due to their high surface-to-volume ratio.However,the limited selectivity and low sensitivity are still long-standing challenges for their further applications.Herein,the self-assembly of 0D-2D heterostructure for highly sensitive NO_(2) detection was achieved by integrating ZnO nanoparticles on Ti_(3)C_(2)Tx MXene-derived TiO_(2) nanosheets(designated as ZnO@MTiO_(2)).ZnO nanoparticles can not only act as spacers to prevent the restacking of MTiO_(2) nanosheets and ensure effective transfer for gas molecules,but also enhance the sensitivity of the sensor the through trapping effect on electrons.Meanwhile,MTiO_(2) nanosheets facilitate gas diffusion for rapid sensor response.Benefiting from the synergistic effect of individual components,the ZnO@MTiO_(2)0D-2D heterostructure-based sensors revealed remarkable sensitivity and excellent selectivity to low concentration NO_(2) at RT.This work may facilitate the sensing application of MXene derivative and provide a new avenue for the development of high-performance gas sensors in safety assurance and environmental monitoring.
基金supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2018M3D1A1058793 and 2021R1A3B1068920)supported by the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2018M3D1A1058744)the Yonsei Signature Research Cluster Program of 2021 (2021-22-0002)。
文摘To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a strategy to effectively capture soluble lithium polysulfide intermediates and promote their conversion reaction by integrating highly polar metal oxides with catalytically active metals sulfides.However,to fully exploit the outstanding properties of heterostructure-based composites,their detailed structure and interfacial contacts should be designed rationally.Herein,optimally arranged TiO_(2)and MoS_(2)-based heterostructures(TiO_(2)@MoS_(2)) are fabricated on carbon cloth as a multifunctional interlayer to efficiently trap polysulfide intermediates and accelerate their redox kinetics.Owing to the synergistic effects between TiO_(2)and MoS_(2)and the uniform heterointerface distribution that induces the ideally oriented built-in electric field,Li-S batteries with TiO_(2)@MoS_(2)interlayers exhibit high rate capability(601 mA h g^(-1)at 5 C),good cycling stability(capacity-fade rate of 0.067% per cycle over 500 cycles at2 C),and satisfactory areal capacity(5.2 mA h cm^(-2)) under an increased sulfur loading of 5.2 mg cm^(-2).Moreover,by comparing with a MoS_(2)@TiO_(2)interlayer composed of reversely arranged heterostructures,the effect of the built-in electric field’s direction on the electrocatalytic reactions of polysulfide intermediates is thoroughly investigated for the first time.The superior electrocatalytic activities of the rationally arranged TiO_(2)@MoS_(2)interlayer demonstrate the importance of optimizing the built-in electric field of heterostructures for producing high-performance Li-S batteries.
基金the National Natural Science Foundation of China(Grant Nos.61574011,60908012,61575008,61775007,61731019,61874145,62074011,and 62134008)the Beijing Natural Science Foundation(Grant Nos.4182015,4172011,and 4202010)Beijing Nova Program(Grant No.Z201100006820096)。
文摘Photodetectors based on two-dimensional materials have attracted much attention because of their unique structure and outstanding performance.The response speed of single ReS_(2)photodetector is slow exceptionally,the heterostructure could improves the response speed of ReS_(2)-based photodetector,but the photodetectors responsivity is reduced greatly,which restricts the development of ReS_(2).In this paper,a vertically structured ReS_(2)/SnS_(2)van der Waals heterostructure photodetectors is prepared,using ReS_(2)as the transport layer and SnS_(2)as the light absorbing layer to regulate the channel current.The device has an ultra-high photoconductive gain of 10^(10),which exhibits an ultra-high responsivity of4706 A/W under 365-nm illumination and response speed in seconds,and has an ultra-high external quantum efficiency of1.602×10^(6)%and a high detectivity of 5.29×10^(12)jones.The study for ReS_(2)-based photodetector displays great potential for developing future optoelectronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.61804047)the Training Program for the Natural Science Foundation of Henan Normal University,China(Grant No.2017PL02)+2 种基金the Scientific Research Start-up Foundation for Ph D of Chaohu University,China(Grant No.KYQD-2023012)the Natural Science Foundation Henan Province of China(Grant No.232300421236)the High Performance Computing Center(HPCC)of Henan Normal University,China。
文摘Type-Ⅱband alignment can realize the efficient charge transfer and separation at the semiconductor heterointerface,which results in photoluminescence(PL)quenching.Recently,several researches demonstrated great enhancement of localized PL at the interface of type-Ⅱtwo-dimensional(2D)heterostructure.However,the dominant physical mechanism of this enhanced PL emission has not been well understood.In this work,we symmetrically study the exciton dynamics of type-Ⅱlateral heterostructures of monolayer MoS_(2) and WS_(2) at room temperatures.The strong PL enhancement along the one-dimensional(1D)heterointerface is associated with the trion emission of the WS_(2) shell,while a dramatic PL quenching of neutral exciton is observed on the MoS_(2) core.The enhanced quantum yield of WS2trion emission can be explained by charge-transfer-enhanced photoexcited carrier dynamics,which is facilitated by resonance hole transfer from MoS_(2) side to WS_(2) side.This work sheds light on the 1D exciton photophysics in lateral heterostructures,which has the potential to lead to new concepts and applications of optoelectronic device.
基金supported by the National Natural Science Foundation of China(Grant nos.62090013,61974043,and 91833303)the National Key R&D Program of China(Grant no.2019YFB2203403)+1 种基金the Projects of Science and Technology Commission of Shanghai Municipality(Grant nos.21JC1402100 and 19511120100)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘The practical application of Lithium-Sulfur batteries largely depends on highly efficient utilization and conversion of sulfur under the realistic condition of high-sulfur content and low electrolyte/sulfur ratio.Rational design of heterostructure electrocatalysts with abundant active sites and strong interfacial electronic interactions is a promising but still challenging strategy for preventing shuttling of polysulfides in lithium-sulfur batteries.Herein,ultrathin nonlayered NiO/Ni_(3)S_(2)heterostructure nanosheets are developed through topochemical transformation of layered Ni(OH)_(2)templates to improve the utilization of sulfur and facilitate stable cycling of batteries.As a multifunction catalyst,NiO/Ni_(3)S_(2)not only enhances the adsorption of polysulfides and shorten the transport path of Li ions and electrons but also promotes the Li_(2)S formation and transformation,which are verified by both in-situ Raman spectroscopy and electrochemical investigations.Thus,the cell with NiO/Ni_(3)S_(2)as electrocatalyst delivers an area capacity of 4.8 mAh cm^(-2)under the high sulfur loading(6 mg cm^(-2))and low electrolyte/sulfur ratio(4.3 pL mg^(-1)).The strategy can be extended to 2D Ni foil,demonstrating its prospects in the construction of electrodes with high gravimetric/volumetric energy densities.The designed electrocatalyst of ultrathin nonlayered heterostructure will shed light on achieving high energy density lithium-sulfur batteries.
基金Project supported by the National Natural Science Foundation of China(Grant No.1186040026)the Incubation Project for High-Level Scientific Research Achievements of Hubei Minzu University,China(Grant No.4205009)the Fund of the Educational Commission of Hubei Province,China(Grant No.T201914)。
文摘Vertically stacked heterostructures have received extensive attention because of their tunable electronic structures and outstanding optical properties.In this work,we study the structural,electronic,and optical properties of vertically stacked GaS-SnS_(2)heterostructure under the frame of density functional theory.We find that the stacked GaS-SnS_(2)heterostructure is a semiconductor with a suitable indirect band gap of 1.82 eV,exhibiting a type-Ⅱband alignment for easily separating the photo-generated carriers.The electronic properties of GaS-SnS_(2)hetero structure can be effectively tuned by an external strain and electric field.The optical absorption of GaS-SnS_(2)heterostructure is more enhanced than those of the GaS monolayer and SnS_(2)monolayer in the visible light region.Our results suggest that the GaS-SnS_(2)hetero structure is a promising candidate for the photocatalyst and photoelectronic devices in the visible light region.
基金support from National Key Research and Development Program of China (2018YFA0704403)NSFC (62074064)Innovation Fund of WNLO
文摘Two-dimensional(2D)/quasi-2D organic-inorganic halide perovskites are regarded as naturally formed multiple quantum wells with inorganic layers isolated by long organic chains,which exhibit layered structure,large exciton binding energy,strong nonlinear optical effect,tunable bandgap via changing the layer number or chemical composition,improved environmental stability,and excellent optoelectronic properties.The extensive choice of long organic chains endows 2D/quasi-2D perovskites with tunable electron-phonon coupling strength,chirality,or ferroelectricity properties.In particular,the layered nature of 2D/quasi-2D perovskites allows us to exfoliate them to thin plates to integrate with other materials to form heterostructures,the fundamental structural units for optoelectronic devices,which would greatly extend the functionalities in view of the diversity of 2D/quasi-2D perovskites.In this paper,the recent achievements of 2D/quasi-2D perovskite-based heterostructures are reviewed.First,the structure and physical properties of 2D/quasi-2D perovskites are introduced.We then discuss the construction and characterizations of 2D/quasi-2D perovskite-based heterostructures and highlight the prominent optical properties of the constructed heterostructures.Further,the potential applications of 2D/quasi-2D perovskite-based heterostructures in photovoltaic devices,light emitting devices,photodetectors/phototransistors,and valleytronic devices are demonstrated.Finally,we summarize the current challenges and propose further research directions in the field of 2D/quasi-2D perovskite-based heterostructures.
基金Project (2009AA03Z427) supported by the High-tech Research and Development Program of ChinaProject (2006z02-006-3) supported by the Science Foundation of Sichuan Province,China
文摘The Cu2S/tetrapod-like ZnO whisker(T-ZnOw) heterostructures were successfully synthesized via a simple polyol process employing the poly(vinyl pyrrolidone)(PVP) as a surfactant.The as-prepared heterostructures were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FTIR).The photocatalytic properties of Cu2S/T-ZnOw nanocomposites synthesized with different PVP concentrations were evaluated by photodegradation of methyl orange(MO) under UV irradiation.The results show that the Cu2S/T-ZnOw nanocomposites exhibit remarkable improved photocatalytic property compared with the pure T-ZnOw.The sample prepared with 3.0 g/L PVP shows an excellent photocatalytic property and the highest photodegradation rate of MO is 97% after UV irradiation for 120 min.Besides,the photocatalytic activity of the photocatalyst has no evident decrease even after four cycles,which demonstrates that the Cu2S/T-ZnOw photocatalyst exhibits an excellent photostability.Moreover,the photocatalytic mechanism of the Cu2S/T-ZnOw nanocomposites was also discussed.
基金support from the Grants (9229079, 9610482,7005468) from City University of Hong KongEarly Career Scheme Project 21302821 from Research Grants Council。
文摘Van der Waals heterostructures(vdWHs) are showing considerable potential in both fundamental exploration and practical applications. Built upon the synthetic successes of(two-dimensional) 2D materials, several synthetic strategies of vdWHs have been developed,allowing the convenient fabrication of diverse vdWHs with decent controllability, quality, and scalability. This review first summarizes the current state of the art in synthetic strategies of vdWHs, including physical combination, deposition, solvothermal synthesis, and synchronous evolution. Then three major applications and their representative vdWH devices have been reviewed, including electronics(tunneling field effect transistors and 2D contact),optoelectronics(photodetector), and energy conversion(electrocatalysts and metal ion batteries), to unveil the potentials of vdWHs in practical applications and provide the general design principles of functional vdWHs for different applications. Besides, moiré superlattices based on vdWHs are discussed to showcase the importance of vdWHs as a platform for novel condensed matter physics. Finally, the crucial challenges towards ideal vdWHs with high performance are discussed, and the outlook for future development is presented. By the systematical integration of synthetic strategies and applications, we hope this review can further light up the rational designs of vdWHs for emerging applications.
基金supported by the“National Natural Science Foundation of China (Nos.51902162,21901154)”the FoundationResearch Project of Jiangsu Province (BK20221338)+1 种基金Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,International Innovation Center for Forest Chemicals and Materials,Nanjing Forestry University,merit-based funding for Nanjing innovation and technology projects,Shanghai Pujiang Program (21PJD022)the Foundation of Jiangsu Key Lab of Biomass Energy and Material (JSBEM-S-202101).
文摘Compared with the traditional heteroatom doping,employing heterostructure is a new modulating approach for carbon-based electrocatalysts.Herein,a facile ball milling-assisted route is proposed to synthesize porous carbon materials composed of abundant graphene/hexagonal boron nitride(G/h-BN)heterostructures.Metal Ni powder and nanoscale h-BN sheets are used as a catalytic substrate/hard template and“nucleation seed”for the formation of the heterostructure,respectively.As-prepared G/h-BN heterostructures exhibit enhanced electrocatalytic activity toward H_(2)O_(2) generation with 86%-95%selectivity at the range of 0.45-0.75 V versus reversible hydrogen electrode(RHE)and a positive onset potential of 0.79 versus RHE(defined at a ring current density of 0.3 mA cm^(-2))in the alkaline solution.In a flow cell,G/h-BN heterostructured electrocatalyst has a H_(2)O_(2) production rate of up to 762 mmol g_(catalyst)^(-1) h^(-1) and Faradaic efficiency of over 75%during 12 h testing,superior to the reported carbon-based electrocatalysts.The density functional theory simulation suggests that the B atoms at the interface of the G/h-BN heterostructure are the key active sites.This research provides a new route to activate carbon catalysts toward highly active and selective O_(2)-to-H_(2)O_(2) conversion.