期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
基于模糊K-近邻规则的多谱磁共振脑图像分割方法的研究 被引量:8
1
作者 聂生东 聂斌 +2 位作者 章鲁 陈瑛 顾顺德 《中国生物医学工程学报》 EI CAS CSCD 北大核心 2002年第5期471-476,465,共7页
本文在K 近邻 (K nearestneighbor ,简称KNN)规则的基础上 ,基于模糊C 均值聚类 (FuzzyC meansclustering ,简称FCM)技术 ,提出了模糊K 近邻算法 (FuzzyK nearestneighbor ,简称FKNN) ,并利用该算法对磁共振脑图像进行分割研究。首先对... 本文在K 近邻 (K nearestneighbor ,简称KNN)规则的基础上 ,基于模糊C 均值聚类 (FuzzyC meansclustering ,简称FCM)技术 ,提出了模糊K 近邻算法 (FuzzyK nearestneighbor ,简称FKNN) ,并利用该算法对磁共振脑图像进行分割研究。首先对磁共振颅脑图像进行预分割 ,剔除颅骨和肌肉等非脑组织 ,只保留大脑结构 ;然后利用FKNN算法对大脑结构进行分割 ,从脑组织中分别提取出白质、灰质和脑脊液。实验结果表明 ,FKNN方法能有效地从大脑结构中分割出白质、灰质和脑脊液 ,分割效果明显优于KNN方法。 展开更多
关键词 模糊K-近邻规则 分割 多谱磁共振脑图像
下载PDF
一种基于近邻规则的缺失数据填补方法 被引量:15
2
作者 王凤梅 胡丽霞 《计算机工程》 CAS CSCD 2012年第21期53-55,62,共4页
数据缺失是数据挖掘与分析过程中的常见问题,若直接删除含缺失的事例可能导致不可靠的决策。为此,针对缺失数据的填补问题,提出一种基于近邻规则的缺失数据填补方法。根据关联规则的后件数据项进行分类,计算分类后的规则项与缺失项集间... 数据缺失是数据挖掘与分析过程中的常见问题,若直接删除含缺失的事例可能导致不可靠的决策。为此,针对缺失数据的填补问题,提出一种基于近邻规则的缺失数据填补方法。根据关联规则的后件数据项进行分类,计算分类后的规则项与缺失项集间的相似度,用最相似的规则项值填补缺失值。实验结果表明,该方法具有较高的填补正确率。 展开更多
关键词 关联规则 缺失数据 填补 近邻规则 相似度 K最近邻
下载PDF
基于粗糙集技术的压缩近邻规则 被引量:1
3
作者 翟俊海 李胜杰 王熙照 《计算机科学》 CSCD 北大核心 2012年第2期236-239,共4页
近邻(Nearest Neighbor,NN)算法是一种简单实用的监督分类算法。但NN算法在分类未知类标的样例时,需要存储整个训练集,还要计算该样例到训练集中每一个样例之间的距离,所以NN算法的计算复杂度非常高。为了克服这一缺点,P.Hart提出了压... 近邻(Nearest Neighbor,NN)算法是一种简单实用的监督分类算法。但NN算法在分类未知类标的样例时,需要存储整个训练集,还要计算该样例到训练集中每一个样例之间的距离,所以NN算法的计算复杂度非常高。为了克服这一缺点,P.Hart提出了压缩近邻(Condensed Nearest Neighbor,CNN)规则算法,即从整个训练集中找原样例集的一致子集(一致子集是能正确分类训练集中其他样例的子集)。其计算复杂度依然比较高,特别是对于大型数据库,寻找其一致子集是非常耗费时间的。针对这一问题,提出了基于粗糙集技术的压缩近邻规则算法。该算法分为3步,首先利用粗糙集方法求属性约简(特征选择),以将冗余的属性去掉。然后选取靠近边界域的样例,以将冗余的样例去掉。最后从选出的样例中计算一致子集。该算法能同时沿垂直方向和水平方法进行数据约简。实验结果显示,所提出的方法是行之有效的。 展开更多
关键词 近邻规则 一致集 样例选择 粗糙集 边界域
下载PDF
基于改进K-近邻规则的数据库营销分析 被引量:1
4
作者 王昱 朱芝孺 《统计与决策》 CSSCI 北大核心 2018年第19期175-178,共4页
文章提出一种基于改进K-近邻规则的数据库营销模型。根据数据样本的近邻信息动态确定其最优的近邻个数K,以避免人为设定K这一重要参数可能造成的影响。根据K个近邻距样本的距离,设定不同的投票权重以预测样本属于某一类别的概率。在实... 文章提出一种基于改进K-近邻规则的数据库营销模型。根据数据样本的近邻信息动态确定其最优的近邻个数K,以避免人为设定K这一重要参数可能造成的影响。根据K个近邻距样本的距离,设定不同的投票权重以预测样本属于某一类别的概率。在实际数据集上的实证结果表明,提出的改进K-近邻规则不仅为K值设定提供了一种有效的方法,还能够提高数据库营销的准确性和结果的可解释性,可以有效应用于实际的数据库营销。 展开更多
关键词 K-近邻规则 近邻信息 数据库营销
下载PDF
基于高斯分量标准化的K近邻故障检测策略
5
作者 张成 赵丽颖 +2 位作者 郑百顺 戴絮年 李元 《计算机应用与软件》 北大核心 2023年第1期90-97,共8页
针对复杂多工况工业过程故障检测问题,提出一种基于高斯分量标准化的K近邻(Gaussian Component Standardization K-Nearest Neighbor,GCS-KNN)故障检测策略。样本数据应用高斯混合模型(Gaussian Mixture Model,GMM)进行训练,将数据分解... 针对复杂多工况工业过程故障检测问题,提出一种基于高斯分量标准化的K近邻(Gaussian Component Standardization K-Nearest Neighbor,GCS-KNN)故障检测策略。样本数据应用高斯混合模型(Gaussian Mixture Model,GMM)进行训练,将数据分解为多个高斯分量;通过每个高斯分量的均值和协方差对该分量内的数据进行标准化处理;应用K近邻(K-Nearest Neighbor,KNN)算法对标准化后的样本进行检测。GCS-KNN通过高斯分量标准化消除数据的多模态特性,提高传统基于KNN检测方法的检测率。利用数值例子和半导体工业过程仿真实验验证了该方法的有效性,并与传统的主元分析(Principal Component Analysis,PCA)、KNN、动态主元分析(Dynamic PCA,DPCA)和加权KNN(Weighted KNN,WKNN)等方法进行对比,结果证实此方法具有显著的优势。 展开更多
关键词 高斯混合模型 多模态故障检测 K近邻规则 标准化 半导体蚀刻过程
下载PDF
基于局部保持投影–加权k近邻规则的多模态间歇过程故障检测策略 被引量:11
6
作者 张成 郭青秀 +1 位作者 冯立伟 李元 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第10期1682-1689,共8页
针对多模态间歇过程故障检测问题,本文提出一种基于局部保持投影–加权k近邻规则(LPP--Wk NN)的故障检测策略.首先,应用局部保持投影(LPP)方法将原始数据投影到低维主元子空间;接下来,在主元子空间中,应用样本第k近邻的局部近邻集确定... 针对多模态间歇过程故障检测问题,本文提出一种基于局部保持投影–加权k近邻规则(LPP--Wk NN)的故障检测策略.首先,应用局部保持投影(LPP)方法将原始数据投影到低维主元子空间;接下来,在主元子空间中,应用样本第k近邻的局部近邻集确定每个样本的权重并计算权重统计量Dw;最后,应用核密度估计方法确定Dw控制限并进行故障检测.本文方法应用LPP对过程数据进行维数约减,既能够降低训练过程中离群点对模型的影响,又能够降低在线故障检测的计算复杂度.同时,加权k近邻规则(Wk NN)方法通过引入权重规则能够使得过程故障检测统计量分布具有单模态结构.相比传统的k NN统计量,本文引入的权重统计量具有更高的故障检测性能.通过数值例子和半导体蚀刻过程的仿真实验,并与主元分析(PCA), k NN, Wk NN, LPP--k NN等方法进行比较,实验结果验证了本文方法的有效性. 展开更多
关键词 局部保持投影 权重k近邻规则 间歇过程 故障检测
下载PDF
基于多维关联规则的大规模数据并行挖掘研究
7
作者 赵林燕 雷沁怡 +2 位作者 洪德华 孙琦 刘翠玲 《电子设计工程》 2023年第24期159-162,167,共5页
为了解决因数据离散程度过大导致大规模数据并行挖掘质量变差的问题,提出基于多维关联规则的大规模数据并行挖掘方法。遵循多维关联思想建立关联树结构,根据RFM值计算公式完善多维运算法则,利用多维关联规则构建数据集合。求取近邻值指... 为了解决因数据离散程度过大导致大规模数据并行挖掘质量变差的问题,提出基于多维关联规则的大规模数据并行挖掘方法。遵循多维关联思想建立关联树结构,根据RFM值计算公式完善多维运算法则,利用多维关联规则构建数据集合。求取近邻值指标、逆近邻值指标的数值,以此确定离散挖掘系数,结合该系数并行挖掘大规模数据。实验结果表明,在多维关联规则作用下,数据离散度取值小于35%,数据分布不再呈现稀疏状态,能有效提升大规模数据并行挖掘质量。 展开更多
关键词 多维关联规则 大规模数据 并行挖掘 RFM值 近邻 近邻
下载PDF
基于一种近邻传播的多目标分布估计算法
8
作者 傅红宇 《无线电工程》 北大核心 2023年第1期105-113,共9页
在基于规则模型的多目标分布估计算法(Regularity Model-based Multi-objective Estimation of Distribution Algorithm, RM-MEDA)基础上,为减小聚类数目的随机性和不确定性对算法性能产生的影响,提出了一种基于规则模型的近邻传播(Affi... 在基于规则模型的多目标分布估计算法(Regularity Model-based Multi-objective Estimation of Distribution Algorithm, RM-MEDA)基础上,为减小聚类数目的随机性和不确定性对算法性能产生的影响,提出了一种基于规则模型的近邻传播(Affinity Propagation, AP)多目标分布估计算法(AP-RM-MEDA)。在算法迭代初期引入AP聚类算法,根据种群传递的信息对种群进行初聚类,得到聚类数目。同时,为了减小AP聚类算法带来的计算开销,提出了一种关于聚类数目的重用策略,并通过实验验证了其有效性。为了提高算法的求解能力,混合差分变异算子生成新的个体。为了验证所提算法的性能,选取RM-MEDA、基于差分进化采样(Differential Evolution Sampling, DES)的多目标分布估计算法(DES-RM-MEDA)和基于规则模型的无聚类多目标分布估计算法(FRM-MEDA)作为对比算法,分别在两目标和三目标测试函数上进行测试。实验结果表明,所提算法的整体性能有所提高。 展开更多
关键词 多目标分布估计算法 规则模型 近邻传播聚类 测试函数
下载PDF
基于维度分组降维的高维数据近似k近邻查询 被引量:6
9
作者 李松 胡晏铭 +2 位作者 郝晓红 张丽平 郝忠孝 《计算机研究与发展》 EI CSCD 北大核心 2021年第3期609-623,共15页
针对现有的高维空间近似k近邻查询算法在数据降维时不考虑维度间关联关系的问题,首次提出了基于维度间关联规则进行维度分组降维的方法.该方法通过将相关联维度分成一组进行降维来减少数据信息的损失,同时针对Hash降维后产生的数据偏移... 针对现有的高维空间近似k近邻查询算法在数据降维时不考虑维度间关联关系的问题,首次提出了基于维度间关联规则进行维度分组降维的方法.该方法通过将相关联维度分成一组进行降维来减少数据信息的损失,同时针对Hash降维后产生的数据偏移问题,设置了符号位并基于符号位的特性对结果进行精炼;为提高维度间关联规则挖掘的效率,提出了一种新的基于UFP-tree的频繁项集挖掘算法.通过将数据映射成二进制编码来进行查询,有效地提高了近似k近邻查询效率,同时基于信息熵筛选编码函数,提高了编码质量;在查询结果精炼的过程,基于信息熵对候选集数据的编码位进行权重的动态设定,通过比较动态加权汉明距离和符号位碰撞次数返回最终近似k近邻结果.理论和实验研究表明,所提方法能够较好地处理高维空间中近似k近邻查询问题. 展开更多
关键词 近似k近邻 高维数据 关联规则 HASH
下载PDF
基于压缩近邻的查重元数据去冗算法设计 被引量:3
10
作者 姚文斌 叶鹏迪 +1 位作者 李小勇 常静坤 《通信学报》 EI CSCD 北大核心 2015年第8期1-7,共7页
随着重复数据删除次数的增加,系统中用于存储指纹索引的清单文件等元数据信息会不断累积,导致不可忽视的存储资源开销。因此,如何在不影响重复数据删除率的基础上,对重复数据删除过程中产生的元数据信息进行压缩,从而减小查重索引,是进... 随着重复数据删除次数的增加,系统中用于存储指纹索引的清单文件等元数据信息会不断累积,导致不可忽视的存储资源开销。因此,如何在不影响重复数据删除率的基础上,对重复数据删除过程中产生的元数据信息进行压缩,从而减小查重索引,是进一步提高重复数据删除效率和存储资源利用率的重要因素。针对查重元数据中存在大量冗余数据,提出了一种基于压缩近邻的查重元数据去冗算法Dedup2。该算法先利用聚类算法将查重元数据分为若干类,然后利用压缩近邻算法消除查重元数据中相似度较高的数据以获得查重子集,并在该查重子集上利用文件相似性对数据对象进行重复数据删除操作。实验结果表明,Dedup2可以在保持近似的重复数据删除比的基础上,将查重索引大小压缩50%以上。 展开更多
关键词 重复数据删除 查重元数据 近邻压缩规则
下载PDF
基于扩散K近邻距离的间歇过程故障诊断 被引量:4
11
作者 李元 刘亚东 张成 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第12期1653-1659,共7页
针对间歇过程多模态、变量非线性、非高斯分布等特征,提出一种基于扩散K近邻距离的故障诊断方法.该方法首先在样本集完全图中应用马尔科夫随机游走定义带有分量权重的扩散距离,可以有效提取数据样本的关联信息和统计特征,然后应用K近邻... 针对间歇过程多模态、变量非线性、非高斯分布等特征,提出一种基于扩散K近邻距离的故障诊断方法.该方法首先在样本集完全图中应用马尔科夫随机游走定义带有分量权重的扩散距离,可以有效提取数据样本的关联信息和统计特征,然后应用K近邻规则方法对样本数据进行故障诊断.这种应用扩散距离替换传统K近邻规则欧式距离的统计方法,既可以提升对数据样本关联性信息的有效提取能力,又可以使得K近邻规则处理非线性、多模态检测问题的性能得以保持.通过在半导体蚀刻批次过程中的仿真应用,与传统线性、非线性方法的对比分析,实验结果验证了方法的有效性. 展开更多
关键词 扩散距离 K近邻规则 故障诊断 间歇过程
下载PDF
计及电器状态关联规则的非侵入式负荷分解 被引量:13
12
作者 徐伟枫 华锦修 +2 位作者 余涛 刘前进 蓝超凡 《电力自动化设备》 EI CSCD 北大核心 2020年第4期197-203,共7页
非侵入式负荷监测与分解(NILMD)是获取电器用电信息的关键技术,针对当前NILMD缺乏考虑不同电器关联运行的用电模式和电器状态的强波动性以致分解精度低的问题,提出一种计及电器状态关联规则的新型负荷分解方法。通过仿射传播聚类提取电... 非侵入式负荷监测与分解(NILMD)是获取电器用电信息的关键技术,针对当前NILMD缺乏考虑不同电器关联运行的用电模式和电器状态的强波动性以致分解精度低的问题,提出一种计及电器状态关联规则的新型负荷分解方法。通过仿射传播聚类提取电器的运行状态,基于互信息熵,运用关联规则算法挖掘电器状态的关联性;调整含关联规则的样本权值并结合k近邻算法实现状态辨识;利用极大似然估计完成负荷功率分解。测试算例验证了所提方法的有效性和准确性。 展开更多
关键词 非侵入式负荷监测 仿射传播 互信息熵 关联规则 K近邻 极大似然估计
下载PDF
基于改进规则激活率的扩展置信规则库推理方法 被引量:6
13
作者 陈楠楠 巩晓婷 傅仰耿 《智能系统学报》 CSCD 北大核心 2019年第6期1179-1188,共10页
数据驱动的扩展置信规则库系统,是在传统置信规则库的基础上利用关系数据来生成规则,使用该方法构建规则库简单有效。然而,该方法激活的规则存在不一致与不完整,并且该方法无法处理零激活的输入。鉴于此,本文提出基于改进规则激活率的... 数据驱动的扩展置信规则库系统,是在传统置信规则库的基础上利用关系数据来生成规则,使用该方法构建规则库简单有效。然而,该方法激活的规则存在不一致与不完整,并且该方法无法处理零激活的输入。鉴于此,本文提出基于改进规则激活率的扩展置信规则库方法,通过高斯核改进个体匹配度计算方法,权衡激活规则的一致性与完整性,并利用k近邻思想解决规则零激活问题。最后,本文选取非线性函数拟合实验和输油管道检漏实验来检验所提方法的效率和准确度。实验结果表明该方法既保证了扩展置信规则库系统的推理效率,也提高了推理结果的精度。 展开更多
关键词 置信规则 数据驱动 证据推理 个体匹配度 k近邻思想 零激活 一致性 完整性
下载PDF
重复剪辑近邻算法预测股票波动趋势 被引量:1
14
作者 王浩 刘荣利 黄登仕 《管理观察》 2005年第9期54-55,共2页
关键词 剪辑 近邻算法 预测 股票 原始数据 聚类分析方法 统计分布规律 非线性系统 证券市场 样本 相似系数 稀疏数据 实际应用 模式识别 判别标准 欧氏距离 能力不强 规则分布 估计方法 高维空间
下载PDF
融合一维元胞自动机的KNN分类算法
15
作者 黄嘉诚 《电大理工》 2023年第1期28-33,共6页
KNN算法在文本数据分类上快速且有效,但存在k值选择困难的局限。在KNN算法的基础上,以欧几里得距离进行升序排列,对测试样本一定邻域内的训练数据进行一维元胞自动机演化,最终得到趋于稳定的测量结果。分别在不同特征数量、不同类别的6... KNN算法在文本数据分类上快速且有效,但存在k值选择困难的局限。在KNN算法的基础上,以欧几里得距离进行升序排列,对测试样本一定邻域内的训练数据进行一维元胞自动机演化,最终得到趋于稳定的测量结果。分别在不同特征数量、不同类别的6种数据集上进行测试,针对大部分情况,在设置了合理的元胞邻域以及演化规则后,分类结果的稳定性以及最高准确度均有不同程度的提升,且能在k值较小时获得最低的误分率。最终将该算法运用到实际声音分类中,准确度较高。 展开更多
关键词 元胞自动机 K近邻 分类 数据集 转化规则
下载PDF
基于案例推理的元胞自动机及大区域城市演变模拟 被引量:88
16
作者 黎夏 刘小平 《地理学报》 EI CSCD 北大核心 2007年第10期1097-1109,共13页
元胞自动机(CA)被越来越多地用于复杂系统的模拟中。许多地理现象的演变与其影响要素之间存在着复杂的关系,并往往具有时空动态性。在研究区域较大和模拟时间较长时,定义具体的规则来反映这种复杂关系有较大的困难。为了解决CA转换规则... 元胞自动机(CA)被越来越多地用于复杂系统的模拟中。许多地理现象的演变与其影响要素之间存在着复杂的关系,并往往具有时空动态性。在研究区域较大和模拟时间较长时,定义具体的规则来反映这种复杂关系有较大的困难。为了解决CA转换规则获取的瓶颈问题,提出了基于案例推理(CBR)的CA模型,并对CBR的k近邻算法进行了改进,使其能反映转换规则的时空动态性。将该模型应用于大区域的珠江三角洲城市演变中。实验结果显示,其模拟的空间格局与实际情况吻合较好。与常规的基于Logistic的CA模型进行了对比,所获得的模拟结果有更高的精度和更接近实际的空间格局,特别在模拟较为复杂的区域时有更好的模拟效果。 展开更多
关键词 元胞自动机 案例推理 K近邻算法 动态转换规则
下载PDF
基于CBR+RBR的快速应急预案生成方法 被引量:10
17
作者 李洋 李星 +1 位作者 吴秋云 陈荦 《兵工自动化》 2013年第5期31-35,共5页
针对现存应急预案大都是文本形式预案,用于处理突发事件时指导性不强、指导作用不明显,提出基于案例推理(case based reasoning,CBR)与基于规则推理(rule based reasoning,RBR)相结合的方法。采用RBR方法,推理得出需要的应急预案,运用CB... 针对现存应急预案大都是文本形式预案,用于处理突发事件时指导性不强、指导作用不明显,提出基于案例推理(case based reasoning,CBR)与基于规则推理(rule based reasoning,RBR)相结合的方法。采用RBR方法,推理得出需要的应急预案,运用CBR方法,使用最近邻匹配方法从案例库中查找符合给定相似度的案例,并将2种方法相结合。结果表明:该方法能克服单独使用CBR时面临的无规则预案生成陷入困境及单独使用RBR时预案生成延时及规则建立难度大的瓶颈,兼容RBR极强的推理演绎能力和CBR建立与维护系统容易的优势,使生成应急预案更加高效可靠。 展开更多
关键词 应急预案 基于案例推理 基于规则推理 K近邻匹配
下载PDF
基于局部加权重构的化工过程数据恢复算法 被引量:4
18
作者 郭金玉 袁堂明 李元 《计算机应用》 CSCD 北大核心 2016年第1期282-286,共5页
针对化工过程数据中存在缺失数据的问题,在保持局部数据结构特征的基础上提出了基于局部加权重构的化工过程数据恢复算法。通过定位缺失的数据点并以符号Na N(Not a Number)标记,将缺失的数据集分为完备数据集和不完备数据集。不完备的... 针对化工过程数据中存在缺失数据的问题,在保持局部数据结构特征的基础上提出了基于局部加权重构的化工过程数据恢复算法。通过定位缺失的数据点并以符号Na N(Not a Number)标记,将缺失的数据集分为完备数据集和不完备数据集。不完备的数据集按照完整性的大小依次找到它们在完备数据集中相应的k个近邻,根据误差平方和最小的原则,求出k个近邻相应的权值,用k个近邻及相应的权值重构出缺失的数据点。将该算法应用在不同缺失率下的两种化工过程数据中并与望最大化主成分分析(EM-PCA)法和平均值(MA)两种传统的数据恢复算法相比较,该算法的恢复数据误差最小,并且计算速度相比EM-PCA算法平均提高了2倍。实验结果表明,局部加权重构的化工过程数据恢复算法可以有效地对数据进行恢复,提高了数据的利用率,适用于非线性化工过程缺失数据的恢复。 展开更多
关键词 数据挖掘 缺失数据 数据恢复 k近邻规则 局部加权重构 化工过程
下载PDF
基于证据聚类的水声目标识别算法研究 被引量:2
19
作者 张扬 杨建华 侯宏 《西北工业大学学报》 EI CAS CSCD 北大核心 2018年第1期96-102,共7页
针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种证据聚类识别算法。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并采用证据近邻分类优化算法为各目标数据构造一组合理的初始基本... 针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种证据聚类识别算法。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并采用证据近邻分类优化算法为各目标数据构造一组合理的初始基本置信指派。然后对算法的目标函数进行循环迭代优化,计算出目标数据最终的全局基本置信指派。最后根据融合结果和所设立的分类规则即可判断目标的类别属性。通过水声目标实测数据的实验,将新算法与其他几种常用的水声目标识别算法进行了对比分析,结果表明其能有效提高识别准确率。 展开更多
关键词 水声目标 证据聚类 证据K近邻 组合规则 模式识别
下载PDF
基于EK-NN的水声目标识别算法研究 被引量:3
20
作者 张扬 杨建华 侯宏 《声学技术》 CSCD 北大核心 2016年第1期15-19,共5页
针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指... 针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。 展开更多
关键词 水声目标识别 证据理论 证据K类近邻算法(EK-NN) 特征向量 组合规则
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部