在基于规则模型的多目标分布估计算法(Regularity Model-based Multi-objective Estimation of Distribution Algorithm, RM-MEDA)基础上,为减小聚类数目的随机性和不确定性对算法性能产生的影响,提出了一种基于规则模型的近邻传播(Affi...在基于规则模型的多目标分布估计算法(Regularity Model-based Multi-objective Estimation of Distribution Algorithm, RM-MEDA)基础上,为减小聚类数目的随机性和不确定性对算法性能产生的影响,提出了一种基于规则模型的近邻传播(Affinity Propagation, AP)多目标分布估计算法(AP-RM-MEDA)。在算法迭代初期引入AP聚类算法,根据种群传递的信息对种群进行初聚类,得到聚类数目。同时,为了减小AP聚类算法带来的计算开销,提出了一种关于聚类数目的重用策略,并通过实验验证了其有效性。为了提高算法的求解能力,混合差分变异算子生成新的个体。为了验证所提算法的性能,选取RM-MEDA、基于差分进化采样(Differential Evolution Sampling, DES)的多目标分布估计算法(DES-RM-MEDA)和基于规则模型的无聚类多目标分布估计算法(FRM-MEDA)作为对比算法,分别在两目标和三目标测试函数上进行测试。实验结果表明,所提算法的整体性能有所提高。展开更多
针对现存应急预案大都是文本形式预案,用于处理突发事件时指导性不强、指导作用不明显,提出基于案例推理(case based reasoning,CBR)与基于规则推理(rule based reasoning,RBR)相结合的方法。采用RBR方法,推理得出需要的应急预案,运用CB...针对现存应急预案大都是文本形式预案,用于处理突发事件时指导性不强、指导作用不明显,提出基于案例推理(case based reasoning,CBR)与基于规则推理(rule based reasoning,RBR)相结合的方法。采用RBR方法,推理得出需要的应急预案,运用CBR方法,使用最近邻匹配方法从案例库中查找符合给定相似度的案例,并将2种方法相结合。结果表明:该方法能克服单独使用CBR时面临的无规则预案生成陷入困境及单独使用RBR时预案生成延时及规则建立难度大的瓶颈,兼容RBR极强的推理演绎能力和CBR建立与维护系统容易的优势,使生成应急预案更加高效可靠。展开更多
针对化工过程数据中存在缺失数据的问题,在保持局部数据结构特征的基础上提出了基于局部加权重构的化工过程数据恢复算法。通过定位缺失的数据点并以符号Na N(Not a Number)标记,将缺失的数据集分为完备数据集和不完备数据集。不完备的...针对化工过程数据中存在缺失数据的问题,在保持局部数据结构特征的基础上提出了基于局部加权重构的化工过程数据恢复算法。通过定位缺失的数据点并以符号Na N(Not a Number)标记,将缺失的数据集分为完备数据集和不完备数据集。不完备的数据集按照完整性的大小依次找到它们在完备数据集中相应的k个近邻,根据误差平方和最小的原则,求出k个近邻相应的权值,用k个近邻及相应的权值重构出缺失的数据点。将该算法应用在不同缺失率下的两种化工过程数据中并与望最大化主成分分析(EM-PCA)法和平均值(MA)两种传统的数据恢复算法相比较,该算法的恢复数据误差最小,并且计算速度相比EM-PCA算法平均提高了2倍。实验结果表明,局部加权重构的化工过程数据恢复算法可以有效地对数据进行恢复,提高了数据的利用率,适用于非线性化工过程缺失数据的恢复。展开更多
针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指...针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。展开更多
文摘针对现存应急预案大都是文本形式预案,用于处理突发事件时指导性不强、指导作用不明显,提出基于案例推理(case based reasoning,CBR)与基于规则推理(rule based reasoning,RBR)相结合的方法。采用RBR方法,推理得出需要的应急预案,运用CBR方法,使用最近邻匹配方法从案例库中查找符合给定相似度的案例,并将2种方法相结合。结果表明:该方法能克服单独使用CBR时面临的无规则预案生成陷入困境及单独使用RBR时预案生成延时及规则建立难度大的瓶颈,兼容RBR极强的推理演绎能力和CBR建立与维护系统容易的优势,使生成应急预案更加高效可靠。
文摘针对化工过程数据中存在缺失数据的问题,在保持局部数据结构特征的基础上提出了基于局部加权重构的化工过程数据恢复算法。通过定位缺失的数据点并以符号Na N(Not a Number)标记,将缺失的数据集分为完备数据集和不完备数据集。不完备的数据集按照完整性的大小依次找到它们在完备数据集中相应的k个近邻,根据误差平方和最小的原则,求出k个近邻相应的权值,用k个近邻及相应的权值重构出缺失的数据点。将该算法应用在不同缺失率下的两种化工过程数据中并与望最大化主成分分析(EM-PCA)法和平均值(MA)两种传统的数据恢复算法相比较,该算法的恢复数据误差最小,并且计算速度相比EM-PCA算法平均提高了2倍。实验结果表明,局部加权重构的化工过程数据恢复算法可以有效地对数据进行恢复,提高了数据的利用率,适用于非线性化工过程缺失数据的恢复。
文摘针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。