This paper describes a guardring-free planar InAlAs/InGaAs avalanche photodiode(APD)by computational simulations and experimental results.The APD adopts the structure of separate absorption,charge,and multiplication(S...This paper describes a guardring-free planar InAlAs/InGaAs avalanche photodiode(APD)by computational simulations and experimental results.The APD adopts the structure of separate absorption,charge,and multiplication(SACM)with top-illuminated.Computational simulations demonstrate how edge breakdown effect is suppressed in the guardringfree structure.The fabricated APD experiment results show that it can obtain a very low dark current while achieving a high gain×bandwidth(GB)product.The dark current is 3 nA at 0.9Vb r,and the unit responsivity is 0.4 A/W.The maximum3 dB bandwidth of 24 GHz and a GB product of 360 GHz are achieved for the fabricated APD operating at 1.55μm.展开更多
This study presents a theoretical investigation of a novel Ge/Si tunneling avalanche photodiode(TAPD)with an ultra-thin barrier layer between the absorption and p+ contact layer. A high-frequency tunneling effect i...This study presents a theoretical investigation of a novel Ge/Si tunneling avalanche photodiode(TAPD)with an ultra-thin barrier layer between the absorption and p+ contact layer. A high-frequency tunneling effect is introduced into the structure of the barrier layer to increase the high-frequency response when frequency is larger than 0.1 GHz, and the-3 dB bandwidth of the device increases evidently. The results demonstrate that the avalanche gain and-3 dB bandwidth of the TAPD can be influenced by the thickness and bandgap of the barrier layer.When the barrier thickness is 2 nm and the bandgap is 4.5 eV, the avalanche gain loss is negligible and the gainbandwidth product of the TAPD is 286 GHz, which is 18% higher than that of an avalanche photodiode without a barrier layer. The total noise in the TAPD was an order of magnitude smaller than that in APD without barrier layer.展开更多
基金the National Key R&D Program of China(Grant No.2020YFB1805701)the National Natural Foundation of China(Grant No.61934003)。
文摘This paper describes a guardring-free planar InAlAs/InGaAs avalanche photodiode(APD)by computational simulations and experimental results.The APD adopts the structure of separate absorption,charge,and multiplication(SACM)with top-illuminated.Computational simulations demonstrate how edge breakdown effect is suppressed in the guardringfree structure.The fabricated APD experiment results show that it can obtain a very low dark current while achieving a high gain×bandwidth(GB)product.The dark current is 3 nA at 0.9Vb r,and the unit responsivity is 0.4 A/W.The maximum3 dB bandwidth of 24 GHz and a GB product of 360 GHz are achieved for the fabricated APD operating at 1.55μm.
基金Project supported by in part by the National Natural Science Foundation of China(Nos.61534005,61675195)the Beijing Science and Technology Commission(No.Z151100003315019)the Natural Science Foundation of Beijing Municipality(No.4162063)
文摘This study presents a theoretical investigation of a novel Ge/Si tunneling avalanche photodiode(TAPD)with an ultra-thin barrier layer between the absorption and p+ contact layer. A high-frequency tunneling effect is introduced into the structure of the barrier layer to increase the high-frequency response when frequency is larger than 0.1 GHz, and the-3 dB bandwidth of the device increases evidently. The results demonstrate that the avalanche gain and-3 dB bandwidth of the TAPD can be influenced by the thickness and bandgap of the barrier layer.When the barrier thickness is 2 nm and the bandgap is 4.5 eV, the avalanche gain loss is negligible and the gainbandwidth product of the TAPD is 286 GHz, which is 18% higher than that of an avalanche photodiode without a barrier layer. The total noise in the TAPD was an order of magnitude smaller than that in APD without barrier layer.
基金Supported by the National High Technology Research and Development Program of China(2018YFB2003305)the Key R&D Program of Jiangsu Province(BE2018005)+2 种基金the Science and Technology Service Network Initiative of the Chinese Academy of Sciences(KFJ-STS-ZDTP-086)the Support From SINANO(Y8AAQ11003)Natural Science Foundation of Jiangsu Province(BK20180252)。