Gravity as a fundamental force plays a dominant role in the formation and evolution of cosmic objects and leaves its effect in the emergence of symmetric and asymmetric structures.Thus,analyzing the symmetry criteria ...Gravity as a fundamental force plays a dominant role in the formation and evolution of cosmic objects and leaves its effect in the emergence of symmetric and asymmetric structures.Thus,analyzing the symmetry criteria allows us to uncover mechanisms behind the gravity interaction and understand the underlying physical processes that contribute to the formation of large-scale structures such as galaxies.We use a segmentation process using intensity thresholding and the k-means clustering algorithm to analyze radio galaxy images.We employ a symmetry criterion and explore the relation between morphological symmetry in radio maps and host galaxy properties.Optical properties(stellar mass,black hole mass,optical size(R_(50)),concentration,stellar mass surface density(μ_(50)),and stellar age)and radio properties(radio flux density,radio luminosity,and radio size)are considered.We found that there is a correlation between symmetry and radio size,indicating larger radio sources have smaller symmetry indices.Therefore,size of radio sources should be considered in any investigation of symmetry.Weak correlations are also observed with other properties,such as R_(50)for FRI galaxies and stellar age.We compare the symmetry differences between FRI and FRII radio galaxies.FRII galaxies show higher symmetry in 1.4 GHz and 150 MHz maps.Investigating the influence of radio source sizes,we discovered that this result is independent of the sizes of radio sources.These findings contribute to our understanding of the morphological properties and analyses of radio galaxies.展开更多
In order to find the physical parameters which determine the accuracy of pho- tometric redshifts, we compare the spectroscopic and photometric redshifts (photo-z's) for a large sample of -80000 SDSS-2MASS galaxies....In order to find the physical parameters which determine the accuracy of pho- tometric redshifts, we compare the spectroscopic and photometric redshifts (photo-z's) for a large sample of -80000 SDSS-2MASS galaxies. Photo-z's in this paper are estimated by using the artificial neural network photometric redshift method (ANNz). For a subset of -40000 randomly selected galaxies, we find that the photometric redshift recovers the spectroscopic redshift distribution very well with rms of 0.016. Our main results are as follows: (1) Using magnitudes directly as input parameters produces more accurate photo-z's than using colors; (2) The inclusion of 2MASS (J, H, Ks) bands does not improve photo-z's significantly, which indicates that near infrared data might not be important for the low-redshift sample; (3) Adding the concentration index (essentially the steepness of the galaxy brightness profile) as an extra input can improve the photo-z's estimation up to -10 percent; (4) Dividing the sample into early- and late-type galaxies by using the concentration index, normal and abnormal galaxies by using the emission line flux ratios, and red and blue galaxies by using color index (g - r), we can improve the accuracy of photo-z's significantly; (5) Our analysis shows that the outliers (where there is a big difference between the spectroscopic and photometric redshifts) are mainly correlated with galaxy types, e.g., most outliers are late-type (blue) galaxies.展开更多
The star formation rate function(SFRF) and specific star formation rate function(s SFRF) from observations are impacted by the Eddington bias, due to uncertainties in the estimated star formation rate(SFR). We develop...The star formation rate function(SFRF) and specific star formation rate function(s SFRF) from observations are impacted by the Eddington bias, due to uncertainties in the estimated star formation rate(SFR). We develop a novel method to correct the Eddington bias and obtain the intrinsic SFRF and sSFRF from the Sloan Digital Sky Survey(SDSS) Data Release 7. The intrinsic SFRF is in good agreement with measurements from previous data in the literature that relied on UV SFRs but its high star-forming end is slightly lower than the corresponding IR and radio tracers. We demonstrate that the intrinsic sSFRF from SDSS has a bimodal form with one peak found at sSFR ~10-9.7 yr^-1 representing the star-forming objects while the other peak is found at sSFR ~10-12 yr^-1 representing the quenched population. Furthermore, we compare our observations with the predictions from the Illustris TNG and Illustris simulations and affirm that the "TNG" model performs much better than its predecessor. However,we show that the simulated SFRF and CSFRD of TNG simulations are highly dependent on resolution,reflecting the limitations of the model and today’s state-of-the-art simulations. We demonstrate that the bimodal, two peaked s SFRF implied by the SDSS observations does not appear in TNG regardless of the adopted box-size or resolution. This tension reflects the need for inclusion of an additional efficient quenching mechanism in the TNG model.展开更多
With the recent observational evidence in extragalactic astronomy,the interpretation of the nature of quasar redshift continues to be a research interest.Very high redshifts are being detected for extragalactic object...With the recent observational evidence in extragalactic astronomy,the interpretation of the nature of quasar redshift continues to be a research interest.Very high redshifts are being detected for extragalactic objects that are presumably very distant and young while also exhibiting properties that are characteristic of a more mature galaxy such as ours.According to Halton Arp and Geoffrey Burbidge,redshift disparities consist of an intrinsic component and are related to an evolutionary process.Karlsson observed redshift periodicity at integer multiples of0.089 in log scale and Burbidge observed redshift periodicity at integer multiples of 0.061 in linear scale.Since Singular Value Decomposition based periodicity estimation is known to be superior for noisy data sets,especially when the data contain multiple harmonics and overtones,mainly irregular in nature,we have chosen it to be our primary tool for analysis of the quasar-galaxy pair redshift data.We have observed a fundamental periodicity of0.051 with a confidence interval of 95%in linear scale with the site-available Sloan Digital Sky Survey Data Release 7(SDSS DR7)quasar-galaxy pair data set.We have independently generated quasar-galaxy pair data sets from both 2d F and SDSS and found fundamental periodicities of 0.077 and 0.089,respectively,in log scale with a confidence interval of 95%.展开更多
We investigate two training-set methods; support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the databases of Sloan Digital Sky Survey Data Release 5 an...We investigate two training-set methods; support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the databases of Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey. We probe the performances of SVMs and KR for different input patterns. Our experiments show that with more parameters considered, the accuracy does not always increase, and only when appropriate parameters are chosen, the accuracy can improve. For different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.展开更多
Hypervelocity stars are believed to be ejected out from the Galactic center through dynamical interactions between(binary) stars and the central supermassive black hole(s). In this paper, we report 19 low mass F/G...Hypervelocity stars are believed to be ejected out from the Galactic center through dynamical interactions between(binary) stars and the central supermassive black hole(s). In this paper, we report 19 low mass F/G/K type hypervelocity star candidates from over one million stars found in the first data release of the LAMOST regular survey. We determine the unbound probability for each candidate using a MonteCarlo simulation by assuming a non-Gaussian proper-motion error distribution, and Gaussian heliocentric distance and radial velocity error distributions. The simulation results show that all the candidates have unbound possibilities over 50% as expected,and one of them may even exceed escape velocity with over 90% probability. In addition, we compare the metallicities of our candidates with the metallicity distribution functions of the Galactic bulge, disk, halo and globular clusters, and conclude that the Galactic bulge or disk is likely the birth place for our candidates.展开更多
We analyse the possibility that the observed cosmological redshift may be cumulatively due to the expansion of the universe and the tired light phenomenon. Since the source of both the redshifts is the same, they both...We analyse the possibility that the observed cosmological redshift may be cumulatively due to the expansion of the universe and the tired light phenomenon. Since the source of both the redshifts is the same, they both independently relate to the same proper distance of the light source. Using this approach we have developed a hybrid model combining the Einstein de Sitter model and the tired light model that yields a slightly better fit to Supernovae Ia redshift data using one parameter than the standard ΛCDM model with two parameters. We have shown that the ratio of tired light component to the Einstein de Sitter component of redshift has evolved from 2.5 in the past, corresponding to redshift 1000, to its present value of 1.5. The hybrid model yields Hubble constant H0 =69.11(±0.53)km·s-1 ·Mpc-1 and the deceleration parameter q0 =-0.4. The component of Hubble constant responsible for expansion of the universe is 40% of H0 and for the tired light is 60% of H0. Consequently, the critical density is only 16% of its currently accepted value;a lot less dark matter is needed to make up the critical density. In addition, the best data fit yields the cosmological constant density parameter =0. The tired light effect may thus be considered equivalent to the cosmological constant in the hybrid model.展开更多
The presence of the dark energy allows both the acceleration and the expansion of the universe. In the case of a constant equation of state for dark energy we derived an analytical solution for the Hubble radius in te...The presence of the dark energy allows both the acceleration and the expansion of the universe. In the case of a constant equation of state for dark energy we derived an analytical solution for the Hubble radius in terms of the hypergeometric function. An approximate Taylor expansion of order seven is derived for both the constant and the variable equation of state for dark energy. In the case of the Cardassian cosmology, we also derived an analytical solution for the Hubble radius in terms of the hypergeometric function. The astronomical samples of the distance modulus for Supernova (SN) of type Ia allows the derivation of the involved cosmological in the case of constant equation of state, variable equation of state and Cardassian cosmology.展开更多
We present a sample of about 120 000 red clump candidates selected from the LAMOST DR2 catalog based on the empirical distribution model in the effective temperature vs. surface gravity plane. Although, in general, re...We present a sample of about 120 000 red clump candidates selected from the LAMOST DR2 catalog based on the empirical distribution model in the effective temperature vs. surface gravity plane. Although, in general, red clump stars are considered as standard candles, they do not exactly stay in a narrow range of absolute magnitude, but may have a range of more than one magnitude depending on their initial mass. Consequently, conventional oversimplified distance estimations with the assumption of a fixed luminosity may lead to systematic bias related to the initial mass or age, which can potentially affect the study of the evolution of the Galaxy with red clump stars. We therefore employ an isochrone-based method to estimate the absolute magnitude of red clump stars from their observed surface gravities, effective temperatures and metallicities. We verify that the estimation removes the systematics well and provides initial mass/age estimates that are independent of distance with accuracy better than 10%.展开更多
The massive photometric data collected from multiple large-scale sky surveys offer significant opportunities for measuring distances of celestial objects by photometric redshifts. However, catastrophic failure is an u...The massive photometric data collected from multiple large-scale sky surveys offer significant opportunities for measuring distances of celestial objects by photometric redshifts. However, catastrophic failure is an unsolved problem with a long history and it still exists in the current photometric redshift estimation approaches (such as the k-nearest neighbor (KNN) algorithm). In this paper, we propose a novel two-stage approach by integration of KNN and support vector machine (SVM) methods together. In the first stage, we apply the KNN algorithm to photometric data and estimate their corresponding Zphot. Our analysis has found two dense regions with catastrophic failure, one in the range of Zphot E [0.3, 1.2] and the other in the range of Zphot E [1.2, 2.1]. In the second stage, we map the photometric input pattern of points falling into the two ranges from their original attribute space into a high dimensional feature space by using a Gaussian kernel function from an SVM. In the high dimensional feature space, many outliers resulting from catastrophic failure by simple Euclidean distance computation in KNN can be identified by a classification hyperplane of SVM and can be further corrected. Experimental results based on the Sloan Digital Sky Survey (SDSS) quasar data show that the two-stage fusion approach can significantly mitigate catastrophic failure and improve the estimation accuracy of photometric redshifts of quasars. The percents in different /△z/ ranges and root mean square (rms) error by the integrated method are 83.47%, 89.83%, 90.90% and 0.192, respectively, compared to the results by KNN (71.96%, 83.78%, 89.73% and 0.204).展开更多
An optical photometric observation with the Beijing-Arizona-Taiwan- Connecticut (BATC) multicolor system is carried out for A98 (z =0.104), a galaxy cluster with two large enhancements in X-ray surface brightness....An optical photometric observation with the Beijing-Arizona-Taiwan- Connecticut (BATC) multicolor system is carried out for A98 (z =0.104), a galaxy cluster with two large enhancements in X-ray surface brightness. Spectral energy distributions (SEDs) covering 15 intermediate bands are obtained for all sources detected down to V - 20 mag in a field of 58′× 58′. After star-galaxy separation with colorcolor diagrams, a photometric redshift technique is applied to the galaxy sample for further membership determination. The color-magnitude relation is taken as a further restriction of the early-type cluster galaxies. As a result, a list of 198 faint member galaxies is achieved. Based on the newly generated sample of member galaxies, the dynamical substructures, A98N, A98S, and A98W, are investigated in detail. A separate galaxy group, A98X, is also found to the south of the main concentration of A98, which is gravitationally unbound to A98. For 74 spectroscopically confirmed member galaxies, the environmental effect on the star formation history is investigated. The bright galaxies in the core region are found to have shorter time scales of star formation, longer mean stellar ages, and higher interstellar medium metallicities, which can be interpreted in the context of the hierarchical cosmological scenario.展开更多
We present a multi-color photometric study of the galaxy cluster A2443 (z = 0.108) with the Beijing-Arizona-Taiwan-Connecticut (BATC) system. The spectral energy distributions (SEDs) in 14 intermediate bands are...We present a multi-color photometric study of the galaxy cluster A2443 (z = 0.108) with the Beijing-Arizona-Taiwan-Connecticut (BATC) system. The spectral energy distributions (SEDs) in 14 intermediate bands are obtained for 5975 detected from -ldeg^2 of the BATC images. Color-color diagrams are used for star-galaxy separation, then a photometric redshift technique is applied to the galaxy sample for cluster membership determination. There are 301 galaxies with photometric redshifts between 0.08 and 0.14 determined as member candidates of A2443, including 289 new ones. Based on this enlarged sample, the luminosity function and color magnitude relation of the cluster are studied. With an evolutionary synthesis model, we find that the fainter galaxies tend to have longer time scales of star formation than the brighter ones. Morphologically, we show an elongated spatial distribution associating with the galaxy cluster ZwCl 2224.2+1651, which contains more blue galaxies. This result indicates that galaxy cluster ZwCl 2224.2+1651 may be falling into A2443, and cluster-cluster interaction could have triggered star formation activities in ZwCl 2224.2+1651.展开更多
By using the Mixture Model and radial velocity data from CfA redshift catalogue, we resolve the substructures of the Virgo cluster. Distances of three main subclusters are determined by the Tully-Fisher galaxies, they...By using the Mixture Model and radial velocity data from CfA redshift catalogue, we resolve the substructures of the Virgo cluster. Distances of three main subclusters are determined by the Tully-Fisher galaxies, they are 18.0±1.3Mpc, 25.0±2 3Mpc and 30.9±3.1Mpc respectively, which implicate that they are independent clusters, and the Virgo area has a significant depth in the line-of -sight direction.展开更多
Using a volume-limited sample of Main Galaxies from SDSS Data Release 5, we investigate the dependence of galaxy properties on local environment. For each galaxy, a local three-dimensional density is calculated. We fi...Using a volume-limited sample of Main Galaxies from SDSS Data Release 5, we investigate the dependence of galaxy properties on local environment. For each galaxy, a local three-dimensional density is calculated. We find that the galaxy morphological type depends strongly on the local environment; galaxies in dense environments have predominantly early type morphologies. Galaxy colors have only a weak dependence on the environment. This puts an important constraint on the process of galaxy formation.展开更多
Photometric redshift(photoz)is a fundamental parameter for multi-wavelength photometric surveys,while galaxy clusters are important cosmological probes and ideal objects for exploring the dense environmental impact on...Photometric redshift(photoz)is a fundamental parameter for multi-wavelength photometric surveys,while galaxy clusters are important cosmological probes and ideal objects for exploring the dense environmental impact on galaxy evolution.We extend our previous work on estimating photoz and detecting galaxy clusters to the latest data releases of the Dark Energy Spectroscopic Instrument(DESI)imaging surveys,Dark Energy Survey(DES)and Hyper Suprime-Cam Subaru Strategic Program(HSC-SSP)imaging surveys and make corresponding catalogs publicly available for more extensive scientific applications.The photoz catalogs include accurate measurements of photoz and stellar mass for about 320,293and 134 million galaxies with r<23,i<24 and i<25 in DESI DR9,DES DR2 and HSC-SSP PDR3 data,respectively.The photoz accuracy is about 0.017,0.024 and 0.029 and the general redshift coverage is z<1,z<1.2 and z<1.6,respectively for those three surveys.The uncertainty of the logarithmic stellar mass that is inferred from stellar population synthesis fitting is about 0.2 dex.With the above photoz catalogs,galaxy clusters are detected using a fast cluster-finding algorithm.A total of 532,810,86,963 and 36,566 galaxy clusters with the number of members larger than 10 is discovered for DESI,DES and HSC-SSP,respectively.Their photoz accuracy is at the level of 0.01.The total mass of our clusters is also estimated by using the calibration relations between the optical richness and the mass measurement from X-ray and radio observations.The photoz and cluster catalogs are available at Science DB(https://www.doi.org/10.11922/sciencedb.o00069.00003)and Paper Data Repository(https://doi.org/10.12149/101089).展开更多
The abundant photometric data collected from multiple large-scale sky surveys give important opportunities for photometric redshift estimation.However,low accuracy is still a serious issue in the current photometric r...The abundant photometric data collected from multiple large-scale sky surveys give important opportunities for photometric redshift estimation.However,low accuracy is still a serious issue in the current photometric redshift estimation methods.In this paper,we propose a novel two-stage approach by integration of Self Organizing Map(SOM)and Convolutional Neural Network(CNN)methods together.The SOM-CNN method is tested on the dataset of 150000 galaxies from Sloan Digital Sky Survey Data Release 13(SDSS-DR13).Inthe first stage,we apply the SOM algorithm to photometric data clustering and divide the samples into early-type and late-type.In the second stage,the SOM-CNN model is established to estimate the photometric redshifts of galaxies.Next,the precision rate and recall rate curves(PRC)are given to evaluate the models of SOM-CNN and Back Propagation(BP).It can been seen from the PRC that the SOM-CNN model is better than BP,and the area of SOM-CNN is 0.94,while the BP is 0.91.Finally,we provide two key error indicators:mean square error(MSE)and Outliers.Our results show that the MSE of early-type is 0.0014 while late-type is 0.0019,which are better than the BP algorithm 22.2%and 26%,respectively.When compared with Outliers,our result is optimally 1.32%,while the K-nearest neighbor(KNN)algorithm has 3.93%.In addition,we also provide the error visualization figures aboutΔZ andδ.According to the statistical calculations,the early-type with an error of less than 0.1 accounts for 98.86%,while the late-type is 99.03%.This result is better than those reported in the literature.展开更多
We test the distance-duality (DD) relation by combining the angular diameter distance DA provided by two galaxy cluster samples compiled by De Filippis et al. (the elliptical β model) and Bonamente et al. (the s...We test the distance-duality (DD) relation by combining the angular diameter distance DA provided by two galaxy cluster samples compiled by De Filippis et al. (the elliptical β model) and Bonamente et al. (the spherical β model), and the luminosity distance DL from Constitution and Union2 type Ia supernova (SNe Ia) datasets. To obtain DL associated with the observed DA at the same redshift, we smooth the noise of the SNe Ia in a model-independent way, obtain the evolutionary curve of DL and, finally, test the DD relation. We find that the elliptical β model, when compared with the SNe Ia from the Constitution compilation, is only consistent with the DD relation at the 3σ confidence level (CL), while the spherical β model is incompatible with the DD relation at the 3σ CL. For the Union2 compilation, the De Filippis and Bonamente samples are marginally compatible with the validity of the DD relation at the 1σ and 2σ CLs, respectively.展开更多
A classical model based on a power law assumption for the radius-time relationship in the expansion of a supernova (SN) allows to derive an analytical expression for the flow of mechanical kinetic energy and the time ...A classical model based on a power law assumption for the radius-time relationship in the expansion of a supernova (SN) allows to derive an analytical expression for the flow of mechanical kinetic energy and the time duration of gamma-ray burst (GRB). A random process based on the ratio of two truncated lognormal distributions for luminosity and luminosity distance allows to derive the statistical distribution for time duration of GRBs. The high velocities involved in the first phase of expansion of a SN require a relativistic treatment. The circumstellar medium is assumed to follow a density profile of Plummer type with eta = 6. A series solution for the relativistic flow of kinetic energy allows to derive in a numerical way the duration time for GRBs. Here we analyze two cosmologies: the standard cosmology and the plasma cosmology.展开更多
We study the relation between Type Ia Supernovae (SNe Ia) and properties of their host galaxies using a large sample with low redshift. By examining the Hubble residuals of the entire sample from the best-fit cosmol...We study the relation between Type Ia Supernovae (SNe Ia) and properties of their host galaxies using a large sample with low redshift. By examining the Hubble residuals of the entire sample from the best-fit cosmology, we show that SNe Ia in passive hosts are brighter than those in star-forming hosts after light curve correction at the 2. 1σ confidence level. We find that SNe Ia in high luminosity hosts are brighter after light-curve correction at the 〉 3σ confidence level. We also find that SNe Ia in large galaxies are brighter after light-curve correction at the ≥2σ confidence level. We demonstrate that the residuals depend linearly on host luminosity at a confidence of 4or or host size at a confidence of 3.3σ.展开更多
We have analysed, for the first time, the clustering properties of Wolf-Rayet (W-R) galaxies, using a large sample of 846 W-R galaxies selected from the Data Release 4 (DR4) of the Sloan Digital Sky Survey (SDSS...We have analysed, for the first time, the clustering properties of Wolf-Rayet (W-R) galaxies, using a large sample of 846 W-R galaxies selected from the Data Release 4 (DR4) of the Sloan Digital Sky Survey (SDSS). We compute the cross-correlation function between W- R galaxies and a reference sample of galaxies drawn from the DR4. We compare the function to the results for control samples of non-W-R star-forming galaxies that are matched closely in redshift, luminosity, concentration, 4000-A break strength and specific star formation rate (SSFR). On scales larger than a few Mpc, W-R galaxies have almost the same clustering amplitude as the control samples, indicating that W-R galaxies and non-W-R control galaxies populate dark matter haloes of similar masses. On scales between 0.1-1 h^-1 Mpc, W-R galaxies are less clustered than the control samples, and the size of the difference depends on the SSFR. Based on both observational and theoretical considerations, we speculate that this negative bias can be interpreted by W-R galaxies residing preferentially at the centers of their dark matter haloes. We examine the distribution of W-R galaxies more closely using the SDSS galaxy group catalogue of Yang et al., and find that -82% of our W-R galaxies are the central galaxies of groups, compared to -74% for the corresponding control galaxies. We find that W-R galaxies are hosted, on average, by dark matter haloes of masses of 10^12.3M⊙, compared to 10^12.1M⊙ for centrally-located W-R galaxies and 10^12.7M⊙ for satellite ones. We would like to point out that this finding, which provides a direct observational support to our conjecture, is really very crude due to the small number of W-R galaxies and the incompleteness of the group catalogue, and needs more work in future with larger samples.展开更多
文摘Gravity as a fundamental force plays a dominant role in the formation and evolution of cosmic objects and leaves its effect in the emergence of symmetric and asymmetric structures.Thus,analyzing the symmetry criteria allows us to uncover mechanisms behind the gravity interaction and understand the underlying physical processes that contribute to the formation of large-scale structures such as galaxies.We use a segmentation process using intensity thresholding and the k-means clustering algorithm to analyze radio galaxy images.We employ a symmetry criterion and explore the relation between morphological symmetry in radio maps and host galaxy properties.Optical properties(stellar mass,black hole mass,optical size(R_(50)),concentration,stellar mass surface density(μ_(50)),and stellar age)and radio properties(radio flux density,radio luminosity,and radio size)are considered.We found that there is a correlation between symmetry and radio size,indicating larger radio sources have smaller symmetry indices.Therefore,size of radio sources should be considered in any investigation of symmetry.Weak correlations are also observed with other properties,such as R_(50)for FRI galaxies and stellar age.We compare the symmetry differences between FRI and FRII radio galaxies.FRII galaxies show higher symmetry in 1.4 GHz and 150 MHz maps.Investigating the influence of radio source sizes,we discovered that this result is independent of the sizes of radio sources.These findings contribute to our understanding of the morphological properties and analyses of radio galaxies.
基金Supported by the National Natural Science Foundation of China
文摘In order to find the physical parameters which determine the accuracy of pho- tometric redshifts, we compare the spectroscopic and photometric redshifts (photo-z's) for a large sample of -80000 SDSS-2MASS galaxies. Photo-z's in this paper are estimated by using the artificial neural network photometric redshift method (ANNz). For a subset of -40000 randomly selected galaxies, we find that the photometric redshift recovers the spectroscopic redshift distribution very well with rms of 0.016. Our main results are as follows: (1) Using magnitudes directly as input parameters produces more accurate photo-z's than using colors; (2) The inclusion of 2MASS (J, H, Ks) bands does not improve photo-z's significantly, which indicates that near infrared data might not be important for the low-redshift sample; (3) Adding the concentration index (essentially the steepness of the galaxy brightness profile) as an extra input can improve the photo-z's estimation up to -10 percent; (4) Dividing the sample into early- and late-type galaxies by using the concentration index, normal and abnormal galaxies by using the emission line flux ratios, and red and blue galaxies by using color index (g - r), we can improve the accuracy of photo-z's significantly; (5) Our analysis shows that the outliers (where there is a big difference between the spectroscopic and photometric redshifts) are mainly correlated with galaxy types, e.g., most outliers are late-type (blue) galaxies.
基金supported by the National Natural Science Foundation of China(Nos.11833005,11890692 and 11621303)111 project(No.B20019)+1 种基金Shanghai Natural Science Foundation(No.15ZR1446700)the support of the Key Laboratory for Particle Physics,Astrophysics and Cosmology,Ministry of Educationthe Tsung-Dao Lee Institute。
文摘The star formation rate function(SFRF) and specific star formation rate function(s SFRF) from observations are impacted by the Eddington bias, due to uncertainties in the estimated star formation rate(SFR). We develop a novel method to correct the Eddington bias and obtain the intrinsic SFRF and sSFRF from the Sloan Digital Sky Survey(SDSS) Data Release 7. The intrinsic SFRF is in good agreement with measurements from previous data in the literature that relied on UV SFRs but its high star-forming end is slightly lower than the corresponding IR and radio tracers. We demonstrate that the intrinsic sSFRF from SDSS has a bimodal form with one peak found at sSFR ~10-9.7 yr^-1 representing the star-forming objects while the other peak is found at sSFR ~10-12 yr^-1 representing the quenched population. Furthermore, we compare our observations with the predictions from the Illustris TNG and Illustris simulations and affirm that the "TNG" model performs much better than its predecessor. However,we show that the simulated SFRF and CSFRD of TNG simulations are highly dependent on resolution,reflecting the limitations of the model and today’s state-of-the-art simulations. We demonstrate that the bimodal, two peaked s SFRF implied by the SDSS observations does not appear in TNG regardless of the adopted box-size or resolution. This tension reflects the need for inclusion of an additional efficient quenching mechanism in the TNG model.
文摘With the recent observational evidence in extragalactic astronomy,the interpretation of the nature of quasar redshift continues to be a research interest.Very high redshifts are being detected for extragalactic objects that are presumably very distant and young while also exhibiting properties that are characteristic of a more mature galaxy such as ours.According to Halton Arp and Geoffrey Burbidge,redshift disparities consist of an intrinsic component and are related to an evolutionary process.Karlsson observed redshift periodicity at integer multiples of0.089 in log scale and Burbidge observed redshift periodicity at integer multiples of 0.061 in linear scale.Since Singular Value Decomposition based periodicity estimation is known to be superior for noisy data sets,especially when the data contain multiple harmonics and overtones,mainly irregular in nature,we have chosen it to be our primary tool for analysis of the quasar-galaxy pair redshift data.We have observed a fundamental periodicity of0.051 with a confidence interval of 95%in linear scale with the site-available Sloan Digital Sky Survey Data Release 7(SDSS DR7)quasar-galaxy pair data set.We have independently generated quasar-galaxy pair data sets from both 2d F and SDSS and found fundamental periodicities of 0.077 and 0.089,respectively,in log scale with a confidence interval of 95%.
基金Supported by the National Natural Science Foundation of China.
文摘We investigate two training-set methods; support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the databases of Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey. We probe the performances of SVMs and KR for different input patterns. Our experiments show that with more parameters considered, the accuracy does not always increase, and only when appropriate parameters are chosen, the accuracy can improve. For different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11303036, 11390371/4 and 11233004)
文摘Hypervelocity stars are believed to be ejected out from the Galactic center through dynamical interactions between(binary) stars and the central supermassive black hole(s). In this paper, we report 19 low mass F/G/K type hypervelocity star candidates from over one million stars found in the first data release of the LAMOST regular survey. We determine the unbound probability for each candidate using a MonteCarlo simulation by assuming a non-Gaussian proper-motion error distribution, and Gaussian heliocentric distance and radial velocity error distributions. The simulation results show that all the candidates have unbound possibilities over 50% as expected,and one of them may even exceed escape velocity with over 90% probability. In addition, we compare the metallicities of our candidates with the metallicity distribution functions of the Galactic bulge, disk, halo and globular clusters, and conclude that the Galactic bulge or disk is likely the birth place for our candidates.
文摘We analyse the possibility that the observed cosmological redshift may be cumulatively due to the expansion of the universe and the tired light phenomenon. Since the source of both the redshifts is the same, they both independently relate to the same proper distance of the light source. Using this approach we have developed a hybrid model combining the Einstein de Sitter model and the tired light model that yields a slightly better fit to Supernovae Ia redshift data using one parameter than the standard ΛCDM model with two parameters. We have shown that the ratio of tired light component to the Einstein de Sitter component of redshift has evolved from 2.5 in the past, corresponding to redshift 1000, to its present value of 1.5. The hybrid model yields Hubble constant H0 =69.11(±0.53)km·s-1 ·Mpc-1 and the deceleration parameter q0 =-0.4. The component of Hubble constant responsible for expansion of the universe is 40% of H0 and for the tired light is 60% of H0. Consequently, the critical density is only 16% of its currently accepted value;a lot less dark matter is needed to make up the critical density. In addition, the best data fit yields the cosmological constant density parameter =0. The tired light effect may thus be considered equivalent to the cosmological constant in the hybrid model.
文摘The presence of the dark energy allows both the acceleration and the expansion of the universe. In the case of a constant equation of state for dark energy we derived an analytical solution for the Hubble radius in terms of the hypergeometric function. An approximate Taylor expansion of order seven is derived for both the constant and the variable equation of state for dark energy. In the case of the Cardassian cosmology, we also derived an analytical solution for the Hubble radius in terms of the hypergeometric function. The astronomical samples of the distance modulus for Supernova (SN) of type Ia allows the derivation of the involved cosmological in the case of constant equation of state, variable equation of state and Cardassian cosmology.
基金supported by the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences (Grant No. XDB09000000)the National Key Basic Research Program of China (2014CB845700)CL acknowledges the National Natural Science Foundation of China (NSFC, Grant Nos. 11373032, 11333003 and U1231119)
文摘We present a sample of about 120 000 red clump candidates selected from the LAMOST DR2 catalog based on the empirical distribution model in the effective temperature vs. surface gravity plane. Although, in general, red clump stars are considered as standard candles, they do not exactly stay in a narrow range of absolute magnitude, but may have a range of more than one magnitude depending on their initial mass. Consequently, conventional oversimplified distance estimations with the assumption of a fixed luminosity may lead to systematic bias related to the initial mass or age, which can potentially affect the study of the evolution of the Galaxy with red clump stars. We therefore employ an isochrone-based method to estimate the absolute magnitude of red clump stars from their observed surface gravities, effective temperatures and metallicities. We verify that the estimation removes the systematics well and provides initial mass/age estimates that are independent of distance with accuracy better than 10%.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61272272 and U1531122)the Natural Science Foundation of Hubei province (Grant2015CFA058)+1 种基金the National Key Basic Research Program of China (2014CB845700)the NSFC-Texas A&M University Joint Research Program (No.11411120219)
文摘The massive photometric data collected from multiple large-scale sky surveys offer significant opportunities for measuring distances of celestial objects by photometric redshifts. However, catastrophic failure is an unsolved problem with a long history and it still exists in the current photometric redshift estimation approaches (such as the k-nearest neighbor (KNN) algorithm). In this paper, we propose a novel two-stage approach by integration of KNN and support vector machine (SVM) methods together. In the first stage, we apply the KNN algorithm to photometric data and estimate their corresponding Zphot. Our analysis has found two dense regions with catastrophic failure, one in the range of Zphot E [0.3, 1.2] and the other in the range of Zphot E [1.2, 2.1]. In the second stage, we map the photometric input pattern of points falling into the two ranges from their original attribute space into a high dimensional feature space by using a Gaussian kernel function from an SVM. In the high dimensional feature space, many outliers resulting from catastrophic failure by simple Euclidean distance computation in KNN can be identified by a classification hyperplane of SVM and can be further corrected. Experimental results based on the Sloan Digital Sky Survey (SDSS) quasar data show that the two-stage fusion approach can significantly mitigate catastrophic failure and improve the estimation accuracy of photometric redshifts of quasars. The percents in different /△z/ ranges and root mean square (rms) error by the integrated method are 83.47%, 89.83%, 90.90% and 0.192, respectively, compared to the results by KNN (71.96%, 83.78%, 89.73% and 0.204).
基金funded by the National Natural Science Foundation of China (NSFC) (Grant Nos. 10778618 and 10633020)the National Basic Research Program of China (973 Program) (Grant No. 2007CB815403)
文摘An optical photometric observation with the Beijing-Arizona-Taiwan- Connecticut (BATC) multicolor system is carried out for A98 (z =0.104), a galaxy cluster with two large enhancements in X-ray surface brightness. Spectral energy distributions (SEDs) covering 15 intermediate bands are obtained for all sources detected down to V - 20 mag in a field of 58′× 58′. After star-galaxy separation with colorcolor diagrams, a photometric redshift technique is applied to the galaxy sample for further membership determination. The color-magnitude relation is taken as a further restriction of the early-type cluster galaxies. As a result, a list of 198 faint member galaxies is achieved. Based on the newly generated sample of member galaxies, the dynamical substructures, A98N, A98S, and A98W, are investigated in detail. A separate galaxy group, A98X, is also found to the south of the main concentration of A98, which is gravitationally unbound to A98. For 74 spectroscopically confirmed member galaxies, the environmental effect on the star formation history is investigated. The bright galaxies in the core region are found to have shorter time scales of star formation, longer mean stellar ages, and higher interstellar medium metallicities, which can be interpreted in the context of the hierarchical cosmological scenario.
基金Supported by the National Natural Science Foundation of China.
文摘We present a multi-color photometric study of the galaxy cluster A2443 (z = 0.108) with the Beijing-Arizona-Taiwan-Connecticut (BATC) system. The spectral energy distributions (SEDs) in 14 intermediate bands are obtained for 5975 detected from -ldeg^2 of the BATC images. Color-color diagrams are used for star-galaxy separation, then a photometric redshift technique is applied to the galaxy sample for cluster membership determination. There are 301 galaxies with photometric redshifts between 0.08 and 0.14 determined as member candidates of A2443, including 289 new ones. Based on this enlarged sample, the luminosity function and color magnitude relation of the cluster are studied. With an evolutionary synthesis model, we find that the fainter galaxies tend to have longer time scales of star formation than the brighter ones. Morphologically, we show an elongated spatial distribution associating with the galaxy cluster ZwCl 2224.2+1651, which contains more blue galaxies. This result indicates that galaxy cluster ZwCl 2224.2+1651 may be falling into A2443, and cluster-cluster interaction could have triggered star formation activities in ZwCl 2224.2+1651.
文摘By using the Mixture Model and radial velocity data from CfA redshift catalogue, we resolve the substructures of the Virgo cluster. Distances of three main subclusters are determined by the Tully-Fisher galaxies, they are 18.0±1.3Mpc, 25.0±2 3Mpc and 30.9±3.1Mpc respectively, which implicate that they are independent clusters, and the Virgo area has a significant depth in the line-of -sight direction.
基金Supported by the National Natural Science Foundation of China.
文摘Using a volume-limited sample of Main Galaxies from SDSS Data Release 5, we investigate the dependence of galaxy properties on local environment. For each galaxy, a local three-dimensional density is calculated. We find that the galaxy morphological type depends strongly on the local environment; galaxies in dense environments have predominantly early type morphologies. Galaxy colors have only a weak dependence on the environment. This puts an important constraint on the process of galaxy formation.
基金supported by the National Natural Science Foundation of China(NSFC,Grant No.12120101003)Beijing Municipal Natural Science Foundation under grant 1222028+2 种基金the China Manned Space Project with Nos.CMS-CSST-2021-A02 and CMS-CSST-2021-A04supported by NSFC under grants 11890691,11890693,11873053,12073035,12133010,11733007the National Key R&D Program of China under grant 2019YFA0405501。
文摘Photometric redshift(photoz)is a fundamental parameter for multi-wavelength photometric surveys,while galaxy clusters are important cosmological probes and ideal objects for exploring the dense environmental impact on galaxy evolution.We extend our previous work on estimating photoz and detecting galaxy clusters to the latest data releases of the Dark Energy Spectroscopic Instrument(DESI)imaging surveys,Dark Energy Survey(DES)and Hyper Suprime-Cam Subaru Strategic Program(HSC-SSP)imaging surveys and make corresponding catalogs publicly available for more extensive scientific applications.The photoz catalogs include accurate measurements of photoz and stellar mass for about 320,293and 134 million galaxies with r<23,i<24 and i<25 in DESI DR9,DES DR2 and HSC-SSP PDR3 data,respectively.The photoz accuracy is about 0.017,0.024 and 0.029 and the general redshift coverage is z<1,z<1.2 and z<1.6,respectively for those three surveys.The uncertainty of the logarithmic stellar mass that is inferred from stellar population synthesis fitting is about 0.2 dex.With the above photoz catalogs,galaxy clusters are detected using a fast cluster-finding algorithm.A total of 532,810,86,963 and 36,566 galaxy clusters with the number of members larger than 10 is discovered for DESI,DES and HSC-SSP,respectively.Their photoz accuracy is at the level of 0.01.The total mass of our clusters is also estimated by using the calibration relations between the optical richness and the mass measurement from X-ray and radio observations.The photoz and cluster catalogs are available at Science DB(https://www.doi.org/10.11922/sciencedb.o00069.00003)and Paper Data Repository(https://doi.org/10.12149/101089).
基金supported by the Joint Research Fund in Astronomy(U1531242)under cooperative agreement between the National Natural Science Foundation of China(NSFC)and Chinese Academy of Sciences(CAS)。
文摘The abundant photometric data collected from multiple large-scale sky surveys give important opportunities for photometric redshift estimation.However,low accuracy is still a serious issue in the current photometric redshift estimation methods.In this paper,we propose a novel two-stage approach by integration of Self Organizing Map(SOM)and Convolutional Neural Network(CNN)methods together.The SOM-CNN method is tested on the dataset of 150000 galaxies from Sloan Digital Sky Survey Data Release 13(SDSS-DR13).Inthe first stage,we apply the SOM algorithm to photometric data clustering and divide the samples into early-type and late-type.In the second stage,the SOM-CNN model is established to estimate the photometric redshifts of galaxies.Next,the precision rate and recall rate curves(PRC)are given to evaluate the models of SOM-CNN and Back Propagation(BP).It can been seen from the PRC that the SOM-CNN model is better than BP,and the area of SOM-CNN is 0.94,while the BP is 0.91.Finally,we provide two key error indicators:mean square error(MSE)and Outliers.Our results show that the MSE of early-type is 0.0014 while late-type is 0.0019,which are better than the BP algorithm 22.2%and 26%,respectively.When compared with Outliers,our result is optimally 1.32%,while the K-nearest neighbor(KNN)algorithm has 3.93%.In addition,we also provide the error visualization figures aboutΔZ andδ.According to the statistical calculations,the early-type with an error of less than 0.1 accounts for 98.86%,while the late-type is 99.03%.This result is better than those reported in the literature.
基金Supported by the National Natural Science Foundation of China(Grants Nos. 10935013 and 11075083)the Zhejiang Provincial Natural Science Foundation of China under Grant No. Z6100077+3 种基金the FANEDD under Grant No. 200922the National Basic Research Program of China (Grant No. 2010CB832803)the NCET under Grant No. 09-0144the PCSIRT under Grant No. IRT0964
文摘We test the distance-duality (DD) relation by combining the angular diameter distance DA provided by two galaxy cluster samples compiled by De Filippis et al. (the elliptical β model) and Bonamente et al. (the spherical β model), and the luminosity distance DL from Constitution and Union2 type Ia supernova (SNe Ia) datasets. To obtain DL associated with the observed DA at the same redshift, we smooth the noise of the SNe Ia in a model-independent way, obtain the evolutionary curve of DL and, finally, test the DD relation. We find that the elliptical β model, when compared with the SNe Ia from the Constitution compilation, is only consistent with the DD relation at the 3σ confidence level (CL), while the spherical β model is incompatible with the DD relation at the 3σ CL. For the Union2 compilation, the De Filippis and Bonamente samples are marginally compatible with the validity of the DD relation at the 1σ and 2σ CLs, respectively.
文摘A classical model based on a power law assumption for the radius-time relationship in the expansion of a supernova (SN) allows to derive an analytical expression for the flow of mechanical kinetic energy and the time duration of gamma-ray burst (GRB). A random process based on the ratio of two truncated lognormal distributions for luminosity and luminosity distance allows to derive the statistical distribution for time duration of GRBs. The high velocities involved in the first phase of expansion of a SN require a relativistic treatment. The circumstellar medium is assumed to follow a density profile of Plummer type with eta = 6. A series solution for the relativistic flow of kinetic energy allows to derive in a numerical way the duration time for GRBs. Here we analyze two cosmologies: the standard cosmology and the plasma cosmology.
基金financial support from the National Basic Research Program of China (973 Program 2009CB824800)+2 种基金the National Natural Science Foundation of China (Grant Nos. 11133006 11163006 and 11173054)the Policy Research Program of Chinese Academy of Sciences (KJCX2-YW-T24)
文摘We study the relation between Type Ia Supernovae (SNe Ia) and properties of their host galaxies using a large sample with low redshift. By examining the Hubble residuals of the entire sample from the best-fit cosmology, we show that SNe Ia in passive hosts are brighter than those in star-forming hosts after light curve correction at the 2. 1σ confidence level. We find that SNe Ia in high luminosity hosts are brighter after light-curve correction at the 〉 3σ confidence level. We also find that SNe Ia in large galaxies are brighter after light-curve correction at the ≥2σ confidence level. We demonstrate that the residuals depend linearly on host luminosity at a confidence of 4or or host size at a confidence of 3.3σ.
基金the National Natural Science Foundation of China
文摘We have analysed, for the first time, the clustering properties of Wolf-Rayet (W-R) galaxies, using a large sample of 846 W-R galaxies selected from the Data Release 4 (DR4) of the Sloan Digital Sky Survey (SDSS). We compute the cross-correlation function between W- R galaxies and a reference sample of galaxies drawn from the DR4. We compare the function to the results for control samples of non-W-R star-forming galaxies that are matched closely in redshift, luminosity, concentration, 4000-A break strength and specific star formation rate (SSFR). On scales larger than a few Mpc, W-R galaxies have almost the same clustering amplitude as the control samples, indicating that W-R galaxies and non-W-R control galaxies populate dark matter haloes of similar masses. On scales between 0.1-1 h^-1 Mpc, W-R galaxies are less clustered than the control samples, and the size of the difference depends on the SSFR. Based on both observational and theoretical considerations, we speculate that this negative bias can be interpreted by W-R galaxies residing preferentially at the centers of their dark matter haloes. We examine the distribution of W-R galaxies more closely using the SDSS galaxy group catalogue of Yang et al., and find that -82% of our W-R galaxies are the central galaxies of groups, compared to -74% for the corresponding control galaxies. We find that W-R galaxies are hosted, on average, by dark matter haloes of masses of 10^12.3M⊙, compared to 10^12.1M⊙ for centrally-located W-R galaxies and 10^12.7M⊙ for satellite ones. We would like to point out that this finding, which provides a direct observational support to our conjecture, is really very crude due to the small number of W-R galaxies and the incompleteness of the group catalogue, and needs more work in future with larger samples.