针对设备到设备(device to device, D2D)直连技术复用蜂窝网络资源导致用户间干扰的问题,提出了一种基于K-means与Gale-Shapley稳定匹配算法的D2D通信干扰管理资源分配方案。通过分析信号与干扰加噪声比公式,采用K-means聚类算法进行用...针对设备到设备(device to device, D2D)直连技术复用蜂窝网络资源导致用户间干扰的问题,提出了一种基于K-means与Gale-Shapley稳定匹配算法的D2D通信干扰管理资源分配方案。通过分析信号与干扰加噪声比公式,采用K-means聚类算法进行用户分组,降低用户间干扰,实现多对一资源复用;为提高通信系统容量且保证用户的公平性,采用Gale-Shapley稳定匹配算法在用户分组基础上实现信道资源共享。仿真结果表明,与基于贪婪的图着色资源分配算法相比,本文算法在保证系统容量基本稳定的情况下,系统干扰降低了10%~30%。展开更多
Arctic changes influence not only temperature and precipitation in the midlatitudes but also contribute to severe convection.This study investigates an extreme gale event that occurred on 30 April 2021 in East China a...Arctic changes influence not only temperature and precipitation in the midlatitudes but also contribute to severe convection.This study investigates an extreme gale event that occurred on 30 April 2021 in East China and was forced by an Arctic potential vorticity(PV)anomaly intrusion.Temperature advection steered by storms contributed to the equatorward propagation of Arctic high PV,forming the Northeast China cold vortex(NCCV).At the upper levels,a PV southward intrusion guided the combination of the polar jet and the subtropical jet,providing strong vertical wind shear and downward momentum transportation to the event.The PV anomaly cooled the upper troposphere and the northern part of East China,whereas the lower levels over southern East China were dominated by local warm air,thus establishing strong instability and baroclinicity.In addition,the entrainment of Arctic dry air strengthened the surface pressure gradient by evaporation cooling.Capturing the above mechanism has the potential to improve convective weather forecasts under climate change.This study suggests that the more frequent NCCV-induced gale events in recent years are partly due to high-latitude waviness and storm activities,and this hypothesis needs to be investigated using more cases.展开更多
Based on the conventional high-and low-altitude and surface observation data,the weather analysis and diagnosis methods were applied to analyze the cold wave process of Ulanqab in January 2016 from the aspects of weat...Based on the conventional high-and low-altitude and surface observation data,the weather analysis and diagnosis methods were applied to analyze the cold wave process of Ulanqab in January 2016 from the aspects of weather reality,circulation background,weather causes,and forecast test.The results show that strong cold air accumulated gradually near Lake Baikal and Central Siberia,affecting the city in a northwest path.During the cold wave process,the transverse trough moved southwards slowly at 500 hPa,and the ground cold high pressure was strong and stable.The cold air continued to move southwards,resulting in the strong cold wave and gale weather with a large impact range and long duration.The high-altitude jet at 300 hPa strengthened the cold wave pile,which was conducive to the outbreak of the cold wave.The intensity and location changes of the 500 hPa positive vorticity center,850 hPa cold advection region and 24-h ground pressure variation well showed the intensity of the cold wave process and the variation of the affected region.The influence of strong cold advection,ground positive pressure variation,and strong vertical wind shear were the main reasons for a strong drop in temperature and gale weather in this process.The test results of prediction reveal that the forecast value of the maximum temperature were relatively lower than the actual value,while the forecast of the minimum temperature was more accurate.The three warning signals were issued timely and accurately.The circulation pattern predicted by numerical models was more accurate in the early stage of the process,but there was an error in the late stage,and the forecast system moved slower than the actual situation.展开更多
深空测控通信通常采用提高载波频率、增大抛物面天线口径等措施来增强设备的跟踪性能,但同时带来了天线的半功率波束宽度变窄、动态特性降低和天线抗阵风扰动能力变弱等问题。大风扰动引起的天线变形和指向偏差会导致深空探测的增益损失...深空测控通信通常采用提高载波频率、增大抛物面天线口径等措施来增强设备的跟踪性能,但同时带来了天线的半功率波束宽度变窄、动态特性降低和天线抗阵风扰动能力变弱等问题。大风扰动引起的天线变形和指向偏差会导致深空探测的增益损失,增益下降会引起测控跟踪不稳定、数据误码率增加、接收机失锁和遥控无法完成等情况,影响测控任务的正常执行。针对大风扰动对我国某深空站转台式35 m A-E座架双反射面天线执行深空探测任务的影响,通过实测数据统计分析了场区全年风速、风向的变化特点,对跟踪弧段内风速与天线指向角度误差数据进行了对比分析,仿真计算了在不同风速、风向情况下天线指向角度误差及对上下行测控链路增益的影响,结合设备现有技术设施,提出了在执行实时任务中的应对策略,降低了大风扰动对测控任务的影响,提高了设备任务执行能力。展开更多
利用双偏振雷达、地面自动站、闪电定位仪、探空等资料对江苏2012—2022年262次雷暴大风过程的环境参数和2020—2022年41个导致雷暴大风的对流风暴演变特征进行分析。结果表明:(1)雷暴大风发生在大气层结不稳定背景下,850 h Pa和500 h P...利用双偏振雷达、地面自动站、闪电定位仪、探空等资料对江苏2012—2022年262次雷暴大风过程的环境参数和2020—2022年41个导致雷暴大风的对流风暴演变特征进行分析。结果表明:(1)雷暴大风发生在大气层结不稳定背景下,850 h Pa和500 h Pa温差中位数超过25°C,对流层中层存在干层;春季动力条件较好,0~6km垂直风切变中位数达到18.4 m·s^(-1),是夏季的2倍;夏季能量条件较好,CAPE平均值可达2 491.0 J·kg^(-1),而春季仅为977.5 J·kg^(-1)。(2)凝练和定量验证了基于双偏振特征量的雷暴大风风暴演变的概念模型:对流风暴的生命史分为3个阶段,初生阶段存在较强的Z_(DR)柱,Z和K_(DP)较弱且未及地;发展阶段K_(DP)柱显著增强,Z_(DR)柱稍有减弱;雷暴大风发生阶段Z、Z_(DR)和K_(DP)核心高度均明显降低。因此,较强的Z_(DR)柱,并伴随显著增强的K_(DP)柱是雷暴大风发生的前兆信号。(3)统计获得双偏振特征量预警指标:初生阶段和发展阶段多数分别发生在雷暴大风发生前60 min和前20 min;在0~2 km的高度上,3~4 d B的Z_(DR)大值区提前10~15 min到达雷暴大风站点。展开更多
基于多普勒天气雷达资料、ERA5再分析资料与地面自动站观测资料,利用WRF(Weather Research and Forecasting)模式、雷达径向风质控及三维变分同化系统(GSI)循环同化对2021年4月30日江苏南通的一次雷暴大风过程进行数值模拟研究,对比分...基于多普勒天气雷达资料、ERA5再分析资料与地面自动站观测资料,利用WRF(Weather Research and Forecasting)模式、雷达径向风质控及三维变分同化系统(GSI)循环同化对2021年4月30日江苏南通的一次雷暴大风过程进行数值模拟研究,对比分析不同试验方案模拟的雷达反射率、风场与热动力的时空演变和结构特征。结果表明:逐30 min循环同化的Exp3方案较未同化和非临近循环同化方案模拟效果有较好提升,表明循环同化和增加频次有效改善了初始场;UNRAVEL退模糊算法质控有效消除了速度模糊,退模糊处理雷达资料后循环同化方案(Exp4)对此次雷暴大风的雷达反射率和地面风场模拟结果有显著调整,其相应特征和演变趋势与观测基本一致,表明UNRAVEL退模糊质控后循环同化更好的改善了初始场;从热动力场结果来看,Exp4方案动热力结构改善较明显,上层辐散下层辐合,存在“冷—暖—冷”的热动力结构,伴随着强烈上升运动、北高南低的气压分布和强垂直风切变,有助于下沉气流将中高层的水平动量向近地面底层传递,从而激发此次雷暴大风。展开更多
利用东京台风中心提供的1971—2020年的西北太平洋热带气旋资料,对南海生成热带气旋的发生频数、发生源地、强度和持续时间、移动路径以及大风分布特征进行统计分析。结果表明:南海热带气旋主要生成于5—12月,其中6—9月为盛行期,约有70...利用东京台风中心提供的1971—2020年的西北太平洋热带气旋资料,对南海生成热带气旋的发生频数、发生源地、强度和持续时间、移动路径以及大风分布特征进行统计分析。结果表明:南海热带气旋主要生成于5—12月,其中6—9月为盛行期,约有70%的热带气旋生成;热带气旋生成位置季节变化明显,6—9月多生成于南海北部17°N附近,11月—次年4月多生成于14°N以南的南海南部,5月和10月为季节转换期,生成位置大幅北进或南撤;热带气旋中心最低气压为940~1004 hPa,平均值为985.4 hPa,近中心最大风速为35~85 kt,平均值为48.3 kt,平均持续天数为6.2 d;热带气旋移动路径以西移和西北移路径居多,各月都有发生,其次为东北移路径,主要发生在5—6月;近90%的南海热带气旋10级以上大风以中心呈对称分布,大风圈平均半径为53.2 n mile,在7级以上大风中以中心呈对称分布的略多于不对称分布的,7级大风圈的平均半径为142.3 n mile。展开更多
利用欧洲中期天气预报中心European Centre for Medium-Range Weather Forecasts(ECMWF)最新的第五代再分析资料ECMWF Reanalysis v5(ERA5),定义了大风事件,使用经验正交分解等方法分析了1979-2021年中国南海海表风速和大风事件的变化特...利用欧洲中期天气预报中心European Centre for Medium-Range Weather Forecasts(ECMWF)最新的第五代再分析资料ECMWF Reanalysis v5(ERA5),定义了大风事件,使用经验正交分解等方法分析了1979-2021年中国南海海表风速和大风事件的变化特征,并对是否受热带气旋的影响进行了区分。结果发现,南海风速分布呈现出十分明显的季节特征,冬季主要为东北风,夏季为西南风;春、夏季南海东北部与其他地区风速变化存在反向关系,除东北部沿海地区外,春季平均风速变化经历了减小-增大-减小的变化,总体呈较弱的增加趋势;而夏季则是增大-减少-增大,总体呈减小趋势。秋季南海风速呈全区一致的变化,呈减小趋势。冬季变为东南与其余部分反向,除西南部外,风速呈显著增强趋势。大风事件发生在风速较大的区域和时间内,冬季和秋季发生大风事件的频次要高于春季和秋季,冬半年要高于夏半年;在冬季和冬半年,大风事件的发生频次在南海中部长山山脉东侧直到南海东北部台湾海峡附近有显著上升趋势;大风事件频次变化趋势随季节改变有很大的差异,冬季和春季大风事件频次变化趋势与夏季和秋季相反。夏半年大风事件频次变化融合了夏季和秋季的变化趋势特点;类似的冬半年大风事件频次融合了冬季和春季的变化趋势特点。在夏季,秋季和夏半年这些受到南海夏季季风影响的季节内,热带气旋对发生的大风事件频次影响更大;对在冬季,春季和冬半年发生的大风事件则影响较小。展开更多
文摘针对设备到设备(device to device, D2D)直连技术复用蜂窝网络资源导致用户间干扰的问题,提出了一种基于K-means与Gale-Shapley稳定匹配算法的D2D通信干扰管理资源分配方案。通过分析信号与干扰加噪声比公式,采用K-means聚类算法进行用户分组,降低用户间干扰,实现多对一资源复用;为提高通信系统容量且保证用户的公平性,采用Gale-Shapley稳定匹配算法在用户分组基础上实现信道资源共享。仿真结果表明,与基于贪婪的图着色资源分配算法相比,本文算法在保证系统容量基本稳定的情况下,系统干扰降低了10%~30%。
基金supported by the China National Science Foundation (Grant No. 41705029)Anhui Joint Foundation (Grant No.2208085UQ11)+2 种基金China Meteorological Administration special grants on innovation and development (Grant No. CXFZ2023J017)China Meteorological Administration special grants on decision-making meteorological service (Grant No. JCZX2022005)support from the innovation team at Anhui Meteorological Bureau
文摘Arctic changes influence not only temperature and precipitation in the midlatitudes but also contribute to severe convection.This study investigates an extreme gale event that occurred on 30 April 2021 in East China and was forced by an Arctic potential vorticity(PV)anomaly intrusion.Temperature advection steered by storms contributed to the equatorward propagation of Arctic high PV,forming the Northeast China cold vortex(NCCV).At the upper levels,a PV southward intrusion guided the combination of the polar jet and the subtropical jet,providing strong vertical wind shear and downward momentum transportation to the event.The PV anomaly cooled the upper troposphere and the northern part of East China,whereas the lower levels over southern East China were dominated by local warm air,thus establishing strong instability and baroclinicity.In addition,the entrainment of Arctic dry air strengthened the surface pressure gradient by evaporation cooling.Capturing the above mechanism has the potential to improve convective weather forecasts under climate change.This study suggests that the more frequent NCCV-induced gale events in recent years are partly due to high-latitude waviness and storm activities,and this hypothesis needs to be investigated using more cases.
文摘Based on the conventional high-and low-altitude and surface observation data,the weather analysis and diagnosis methods were applied to analyze the cold wave process of Ulanqab in January 2016 from the aspects of weather reality,circulation background,weather causes,and forecast test.The results show that strong cold air accumulated gradually near Lake Baikal and Central Siberia,affecting the city in a northwest path.During the cold wave process,the transverse trough moved southwards slowly at 500 hPa,and the ground cold high pressure was strong and stable.The cold air continued to move southwards,resulting in the strong cold wave and gale weather with a large impact range and long duration.The high-altitude jet at 300 hPa strengthened the cold wave pile,which was conducive to the outbreak of the cold wave.The intensity and location changes of the 500 hPa positive vorticity center,850 hPa cold advection region and 24-h ground pressure variation well showed the intensity of the cold wave process and the variation of the affected region.The influence of strong cold advection,ground positive pressure variation,and strong vertical wind shear were the main reasons for a strong drop in temperature and gale weather in this process.The test results of prediction reveal that the forecast value of the maximum temperature were relatively lower than the actual value,while the forecast of the minimum temperature was more accurate.The three warning signals were issued timely and accurately.The circulation pattern predicted by numerical models was more accurate in the early stage of the process,but there was an error in the late stage,and the forecast system moved slower than the actual situation.
文摘深空测控通信通常采用提高载波频率、增大抛物面天线口径等措施来增强设备的跟踪性能,但同时带来了天线的半功率波束宽度变窄、动态特性降低和天线抗阵风扰动能力变弱等问题。大风扰动引起的天线变形和指向偏差会导致深空探测的增益损失,增益下降会引起测控跟踪不稳定、数据误码率增加、接收机失锁和遥控无法完成等情况,影响测控任务的正常执行。针对大风扰动对我国某深空站转台式35 m A-E座架双反射面天线执行深空探测任务的影响,通过实测数据统计分析了场区全年风速、风向的变化特点,对跟踪弧段内风速与天线指向角度误差数据进行了对比分析,仿真计算了在不同风速、风向情况下天线指向角度误差及对上下行测控链路增益的影响,结合设备现有技术设施,提出了在执行实时任务中的应对策略,降低了大风扰动对测控任务的影响,提高了设备任务执行能力。
文摘利用双偏振雷达、地面自动站、闪电定位仪、探空等资料对江苏2012—2022年262次雷暴大风过程的环境参数和2020—2022年41个导致雷暴大风的对流风暴演变特征进行分析。结果表明:(1)雷暴大风发生在大气层结不稳定背景下,850 h Pa和500 h Pa温差中位数超过25°C,对流层中层存在干层;春季动力条件较好,0~6km垂直风切变中位数达到18.4 m·s^(-1),是夏季的2倍;夏季能量条件较好,CAPE平均值可达2 491.0 J·kg^(-1),而春季仅为977.5 J·kg^(-1)。(2)凝练和定量验证了基于双偏振特征量的雷暴大风风暴演变的概念模型:对流风暴的生命史分为3个阶段,初生阶段存在较强的Z_(DR)柱,Z和K_(DP)较弱且未及地;发展阶段K_(DP)柱显著增强,Z_(DR)柱稍有减弱;雷暴大风发生阶段Z、Z_(DR)和K_(DP)核心高度均明显降低。因此,较强的Z_(DR)柱,并伴随显著增强的K_(DP)柱是雷暴大风发生的前兆信号。(3)统计获得双偏振特征量预警指标:初生阶段和发展阶段多数分别发生在雷暴大风发生前60 min和前20 min;在0~2 km的高度上,3~4 d B的Z_(DR)大值区提前10~15 min到达雷暴大风站点。
文摘基于多普勒天气雷达资料、ERA5再分析资料与地面自动站观测资料,利用WRF(Weather Research and Forecasting)模式、雷达径向风质控及三维变分同化系统(GSI)循环同化对2021年4月30日江苏南通的一次雷暴大风过程进行数值模拟研究,对比分析不同试验方案模拟的雷达反射率、风场与热动力的时空演变和结构特征。结果表明:逐30 min循环同化的Exp3方案较未同化和非临近循环同化方案模拟效果有较好提升,表明循环同化和增加频次有效改善了初始场;UNRAVEL退模糊算法质控有效消除了速度模糊,退模糊处理雷达资料后循环同化方案(Exp4)对此次雷暴大风的雷达反射率和地面风场模拟结果有显著调整,其相应特征和演变趋势与观测基本一致,表明UNRAVEL退模糊质控后循环同化更好的改善了初始场;从热动力场结果来看,Exp4方案动热力结构改善较明显,上层辐散下层辐合,存在“冷—暖—冷”的热动力结构,伴随着强烈上升运动、北高南低的气压分布和强垂直风切变,有助于下沉气流将中高层的水平动量向近地面底层传递,从而激发此次雷暴大风。
文摘利用东京台风中心提供的1971—2020年的西北太平洋热带气旋资料,对南海生成热带气旋的发生频数、发生源地、强度和持续时间、移动路径以及大风分布特征进行统计分析。结果表明:南海热带气旋主要生成于5—12月,其中6—9月为盛行期,约有70%的热带气旋生成;热带气旋生成位置季节变化明显,6—9月多生成于南海北部17°N附近,11月—次年4月多生成于14°N以南的南海南部,5月和10月为季节转换期,生成位置大幅北进或南撤;热带气旋中心最低气压为940~1004 hPa,平均值为985.4 hPa,近中心最大风速为35~85 kt,平均值为48.3 kt,平均持续天数为6.2 d;热带气旋移动路径以西移和西北移路径居多,各月都有发生,其次为东北移路径,主要发生在5—6月;近90%的南海热带气旋10级以上大风以中心呈对称分布,大风圈平均半径为53.2 n mile,在7级以上大风中以中心呈对称分布的略多于不对称分布的,7级大风圈的平均半径为142.3 n mile。
文摘利用欧洲中期天气预报中心European Centre for Medium-Range Weather Forecasts(ECMWF)最新的第五代再分析资料ECMWF Reanalysis v5(ERA5),定义了大风事件,使用经验正交分解等方法分析了1979-2021年中国南海海表风速和大风事件的变化特征,并对是否受热带气旋的影响进行了区分。结果发现,南海风速分布呈现出十分明显的季节特征,冬季主要为东北风,夏季为西南风;春、夏季南海东北部与其他地区风速变化存在反向关系,除东北部沿海地区外,春季平均风速变化经历了减小-增大-减小的变化,总体呈较弱的增加趋势;而夏季则是增大-减少-增大,总体呈减小趋势。秋季南海风速呈全区一致的变化,呈减小趋势。冬季变为东南与其余部分反向,除西南部外,风速呈显著增强趋势。大风事件发生在风速较大的区域和时间内,冬季和秋季发生大风事件的频次要高于春季和秋季,冬半年要高于夏半年;在冬季和冬半年,大风事件的发生频次在南海中部长山山脉东侧直到南海东北部台湾海峡附近有显著上升趋势;大风事件频次变化趋势随季节改变有很大的差异,冬季和春季大风事件频次变化趋势与夏季和秋季相反。夏半年大风事件频次变化融合了夏季和秋季的变化趋势特点;类似的冬半年大风事件频次融合了冬季和春季的变化趋势特点。在夏季,秋季和夏半年这些受到南海夏季季风影响的季节内,热带气旋对发生的大风事件频次影响更大;对在冬季,春季和冬半年发生的大风事件则影响较小。