期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
High Order IMEX Stochastic Galerkin Schemes for Linear Transport Equation with Random Inputs and Diffusive Scalings
1
作者 Zheng Chen Lin Mu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期325-339,共15页
In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the g... In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property. 展开更多
关键词 Stochastic galerkin scheme linear transport equations generalized polynomial approach stochastic asymptotic-preserving property
下载PDF
Local Discontinuous Galerkin Scheme for Space Fractional Allen–Cahn Equation 被引量:2
2
作者 Can Li Shuming Liu 《Communications on Applied Mathematics and Computation》 2020年第1期73-91,共19页
This paper is concerned with the efficient numerical solution for a space fractional Allen–Cahn(AC)equation.Based on the features of the fractional derivative,we design and analyze a semi-discrete local discontinuous... This paper is concerned with the efficient numerical solution for a space fractional Allen–Cahn(AC)equation.Based on the features of the fractional derivative,we design and analyze a semi-discrete local discontinuous Galerkin(LDG)scheme for the initial-boundary problem of the space fractional AC equation.We prove the optimal convergence rates of the semi-discrete LDG approximation for smooth solutions.Finally,we test the accuracy and efficiency of the designed numerical scheme on a uniform grid by three examples.Numerical simulations show that the space fractional AC equation displays abundant dynamical behaviors. 展开更多
关键词 Fractional Allen-Cahn equation Local discontinuous galerkin scheme Error estimates
下载PDF
High-order implicit discontinuous Galerkin schemes for unsteady compressible Navier–Stokes equations 被引量:3
3
作者 Jiang Zhenhua Yan Chao Yu Jian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1384-1389,共6页
Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme... Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme is applied for the time integration and a multigrid preconditioned GMRES solver is extended to solve the nonlinear system arising from each IRK stage. Several modifications to the implicit solver have been considered to achieve the efficiency enhancement and meantime to reduce the memory requirement. A variety of time-accurate viscous flow simulations are performed to assess the resulting high-order implicit DG methods. The designed order of accuracy for temporal discretization scheme is validate and the present implicit solver shows the superior performance by allowing quite large time step to be used in solving time-implicit systems. Numerical results are in good agreement with the published data and demonstrate the potential advantages of the high-order scheme in gaining both the high accuracy and the high efficiency. 展开更多
关键词 Discontinuous galerkin scheme GMRES solver High order Implicit Runge–Kutta method Unsteady flows
原文传递
EQUIVALENCE OF SEMI-LAGRANGIAN AND LAGRANGE-GALERKIN SCHEMES UNDER CONSTANT ADVECTION SPEED
4
作者 Roberto Ferretti 《Journal of Computational Mathematics》 SCIE CSCD 2010年第4期461-473,共13页
We compare in this paper two major implementations of large time-step schemes for advection equations, i.e., Semi-Lagrangian and Lagrange-Galerkin techniques. We show that SL schemes are equivalent to exact LG schemes... We compare in this paper two major implementations of large time-step schemes for advection equations, i.e., Semi-Lagrangian and Lagrange-Galerkin techniques. We show that SL schemes are equivalent to exact LG schemes via a suitable definition of the basis functions. In this paper, this equivalence will be proved assuming some simplifying hypoteses, mainly constant advection speed, uniform space grid, symmetry and translation invariance of the cardinal basis functions for interpolation. As a byproduct of this equivalence, we obtain a simpler proof of stability for SL schemes in the constant-coefficient case. 展开更多
关键词 Semi-Lagrangian schemes Lagrange-galerkin schemes Stability.
原文传递
A Principal Theorem of Generalized Galerkin's Schemes 被引量:1
5
作者 Du Nai-lin 1, Du Nai-xia 2 1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei China 2. Hebei Institute of Architectural Science and Technology, Handan 056038, Hebei China 《Wuhan University Journal of Natural Sciences》 CAS 2002年第2期137-138,共2页
In the present paper, the authors announce a newlyproved theorem of theirs. This theorem is of principal significance to numerical computation of solutions of variational equations.
关键词 variational equation generalized galerkin's scheme PSEUDOINVERSE
下载PDF
间断Galerkin有限元隐式算法GPU并行化研究
6
作者 高缓钦 陈红全 +1 位作者 贾雪松 徐圣冠 《空气动力学学报》 CSCD 北大核心 2024年第2期21-33,I0001,共14页
为了提高间断伽辽金(discontinuous Galerkin,DG)有限元方法的计算效率,围绕求解Euler方程,构建了基于图形处理器(graphics processing unit,GPU)并行加速的隐式DG算法。算法结合Roe格式进行空间离散,采用人工黏性法处理激波等间断问题... 为了提高间断伽辽金(discontinuous Galerkin,DG)有限元方法的计算效率,围绕求解Euler方程,构建了基于图形处理器(graphics processing unit,GPU)并行加速的隐式DG算法。算法结合Roe格式进行空间离散,采用人工黏性法处理激波等间断问题,时间推进选用下上对称高斯-赛德尔(lower-upper symmetric Gauss-Seidel,LU-SGS)隐式格式。为了克服传统隐式格式固有的数据关联依赖问题,借助于本文提出的面向任意网格的单元着色分组技术,先给出了LUSGS隐式格式的并行化改造,使得隐式时间推进能按颜色组别依次并行,由于同一颜色组内算法已不存在数据关联,可以据此实现并行化。在此基础上,再结合DG算法局部紧致等特点,基于统一计算设备架构(compute unified device architecture,CUDA)编程模型,设计了依据单元的核函数,并构建了对应的线程与数据结构,给出了DG有限元隐式GPU并行算法。最后,发展的算法通过了多个二维和三维典型流动算例考核与性能测试,展示出隐式算法GPU加速的效果,且获得的计算结果能与现有的文献或实验数据接近。 展开更多
关键词 间断伽辽金方法 LU-SGS隐式格式 GPU并行化 单元着色分组 EULER方程
下载PDF
Velocity Projection with Upwind Scheme Based on the Discontinuous Galerkin Methods for the Two Phase Flow Problem
7
作者 Jiangyong Hou Wenjing Yan Jie Chen 《International Journal of Modern Nonlinear Theory and Application》 2015年第2期127-141,共15页
The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase... The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase flow problem, the Penalty Discontinuous Galerkin (PDG) methods combined with the upwind scheme are usually used to solve the phase pressure equation. In this case, unless the upwind scheme is taken into consideration in the velocity reconstruction, the local mass balance cannot hold exactly. In this paper, we present a scheme of velocity reconstruction in some H(div) spaces with considering the upwind scheme totally. Furthermore, the different ways to calculate the nonlinear coefficients may have distinct and significant effects, which have been investigated by some authors. We propose a new algorithm to obtain a more effective and stable approximation of the coefficients under the consideration of the upwind scheme. 展开更多
关键词 VELOCITY PROJECTION UPWIND scheme PENALTY DISCONTINUOUS galerkin Methods Two Phase Flow in Porous Media
下载PDF
High-Order Decoupled and Bound Preserving Local Discontinuous Galerkin Methods for a Class of Chemotaxis Models
8
作者 Wei Zheng Yan Xu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期372-398,共27页
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe... In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving. 展开更多
关键词 Chemotaxis models Local discontinuous galerkin(LDG)scheme Convex splitting method Variant energy quadratization method Scalar auxiliary variable method Spectral deferred correction method
下载PDF
一类四阶方程基于降阶格式的谱Galerkin逼近及误差估计
9
作者 王远路 江剑韬 《遵义师范学院学报》 2024年第2期81-84,92,共5页
本文针对一类四阶方程提出了一种基于降阶格式的有效谱Galerkin逼近.首先,引入一个辅助函数,将四阶方程化为两个耦合的二阶方程,并推导了它们的弱形式及其离散格式.其次,利用Lax-Milgram引理和非一致带权Sobolev空间中正交投影算子的逼... 本文针对一类四阶方程提出了一种基于降阶格式的有效谱Galerkin逼近.首先,引入一个辅助函数,将四阶方程化为两个耦合的二阶方程,并推导了它们的弱形式及其离散格式.其次,利用Lax-Milgram引理和非一致带权Sobolev空间中正交投影算子的逼近性质,严格地证明了弱解和逼近解的存在唯一性及它们之间的误差估计.最后,通过一些数值算例,数值结果表明该算法是收敛和高精度的. 展开更多
关键词 四阶方程 降阶格式 galerkin逼近 误差估计
下载PDF
一种高效的隐式间断Galerkin方法研究 被引量:2
10
作者 郭永恒 杨永 张强 《空气动力学学报》 EI CSCD 北大核心 2012年第2期250-253,265,共5页
基于线性化处理,在时间方向上对间断Galerkin方程进行了隐式离散,从整体上对迭代过程进行了合理的优化,并以此求解了计算流体力学中的二维Euler方程。其中,LU-SGS方法得到了进一步的推广,被用来高效求解隐式格式对应的大型稀疏线性系统... 基于线性化处理,在时间方向上对间断Galerkin方程进行了隐式离散,从整体上对迭代过程进行了合理的优化,并以此求解了计算流体力学中的二维Euler方程。其中,LU-SGS方法得到了进一步的推广,被用来高效求解隐式格式对应的大型稀疏线性系统。数值实验表明,无论对于亚声速问题还是跨声速问题,该格式都是无条件稳定的;与显式的Runge-Kutta间断Galerkin格式相比,当残值下降到相同量级时,隐式格式所需的迭代步数和CPU时间均在很大程度上得到了减少。 展开更多
关键词 间断galerkin 隐式格式 优化 无条件稳定 CPU时间
下载PDF
一种基于间断Galerkin格式的新型限制器设计 被引量:1
11
作者 郭永恒 杨永 刘逸鸥 《空气动力学学报》 CSCD 北大核心 2014年第4期462-467,共6页
使用高阶间断Galerkin格式求解守恒律方程组时,激波附近的Gibbs效应容易导致非物理解的产生。为抑制这一现象,必须构造合理的限制器对数值解进行处理。目前间断Galerkin格式中的限制器多源于有限体积法,在非结构网格上只对低阶导数项进... 使用高阶间断Galerkin格式求解守恒律方程组时,激波附近的Gibbs效应容易导致非物理解的产生。为抑制这一现象,必须构造合理的限制器对数值解进行处理。目前间断Galerkin格式中的限制器多源于有限体积法,在非结构网格上只对低阶导数项进行限制,对高阶导数项则很难给出普适判据。文章对间断Galerkin解进行广义Fourier展开,实现不同频域范围内的谱分解;在新的模板坐标系下描述各阶方向导数的变化规律;结合当前单元和相邻单元的信息,分层限制各阶方向导数,实现对非物理解的抑制。通过求解Euler方程,对二维Riemann问题、翼型周围的亚、跨声速流动问题、前台阶问题以及超燃冲压发动机内流场激波反射问题进行数值模拟,检验了新型限制器的可靠性以及向高阶格式推广的可行性。 展开更多
关键词 间断galerkin格式 限制器 广义Fourier展开 模板坐标系 方向导数
下载PDF
采用Galerkin离散方法的T-小波边界元法
12
作者 王焘 校金友 +1 位作者 曹衍闯 张铎 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第12期99-104,共6页
提出一种采用Galerkin离散方法的T-小波边界元新方法.通过边界元形函数的正交变换构造T-小波,以T-小波为试函数和测试函数,采用Galerkin方法离散积分方程,对所形成的系数矩阵进行压缩,有效地降低了边界元分析的计算和存储量.此外,还提... 提出一种采用Galerkin离散方法的T-小波边界元新方法.通过边界元形函数的正交变换构造T-小波,以T-小波为试函数和测试函数,采用Galerkin方法离散积分方程,对所形成的系数矩阵进行压缩,有效地降低了边界元分析的计算和存储量.此外,还提出一种系数矩阵快速计算方法,通过泰勒多项式的矩量矩阵变换得到关于泰勒多项式法向导数的矩量矩阵.此新方法的特点是只需构造1组T-小波作为基函数,克服了现有T-小波边界元法采用Petrov-Galerkin方法离散边界积分方程需分别构造试函数和测试函数、用于小波构造的计算和存储量大的问题.通过对2个中、大规模电容提取问题的算例进行求解,结果表明:此新方法在保持精度不变的情况下,可将用于T-小波构造的计算时间和内存占用量分别降低约一半. 展开更多
关键词 边界元法 T-小波 galerkin 矩阵压缩
下载PDF
非自治反应扩散方程的非线性Galerkin方法
13
作者 殷朝阳 丁伟 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 1999年第S1期11-16,共6页
着重研究了非自治反应扩散方程的非线性 Galerkin 方法, 非线性 Galerkin 方法是一种能有效处理发展偏微分方程的长时间积分的数值模式. 特别对于具有拟周期外力的非自治反应扩散方程, 证明了它的可行性, 并得到了... 着重研究了非自治反应扩散方程的非线性 Galerkin 方法, 非线性 Galerkin 方法是一种能有效处理发展偏微分方程的长时间积分的数值模式. 特别对于具有拟周期外力的非自治反应扩散方程, 证明了它的可行性, 并得到了相应的收敛性结果. 展开更多
关键词 拟周期外力 非线性galerkin方法 数值模式
下载PDF
局部Petrov-Galerkin无网格方法
14
作者 蒙彦宇 郭鹏飞 关海爽 《辽宁工学院学报》 2005年第5期311-313,317,共4页
简要地阐述了无网格方法,概括了几种典型的无网格插值方案。论述了建立在各种无网格方法一般基础之上的局部彼得洛夫-迦辽金无网格方法,此方法是一种真正的无网格方法,这种方法采用移动最小二乘近似函数作为试函数。此方法的最大特点是... 简要地阐述了无网格方法,概括了几种典型的无网格插值方案。论述了建立在各种无网格方法一般基础之上的局部彼得洛夫-迦辽金无网格方法,此方法是一种真正的无网格方法,这种方法采用移动最小二乘近似函数作为试函数。此方法的最大特点是在所考虑点处的规则局部区域上以及局部边界上积分,同时给出了建立在无网格局部Petrov-G alerk in方法基础之上的几种M LPG方法,以及M LPG方法的进展和应用。 展开更多
关键词 无网格方法 移动最小二乘(MLS) Petrov-galerkin方法 插值方案
下载PDF
环形空腔内自然对流问题的 Galerkin 格式及其分析
15
作者 杨晓忠 《西安交通大学学报》 EI CAS CSCD 北大核心 1998年第2期86-90,共5页
讨论了环形空腔内自然对流问题所满足的流函数形式的Boussinesq方程组,建立了5种全离散Galerkin有限元格式,在一定条件下,讨论了这些格式的稳定性和收敛性,给出了先验误差估计.
关键词 galerkin格式 环形空腔 自然对流 有限元
下载PDF
A Novel Staggered Semi-implicit Space-Time Discontinuous Galerkin Method for the Incompressible Navier-Stokes Equations
16
作者 F.L.Romeo M.Dumbser M.Tavelli 《Communications on Applied Mathematics and Computation》 2021年第4期607-647,共41页
A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.Th... A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time. 展开更多
关键词 Incompressible Navier-Stokes equations Semi-implicit space-time discontinuous galerkin schemes Staggered unstructured meshes Space-time pressure correction method High-order accuracy in space and time
下载PDF
解偏微分方程的多步-小波-Galerkin方法
17
作者 邓小炎 朱静芬 《高校应用数学学报(A辑)》 CSCD 北大核心 2007年第3期332-342,共11页
推广Lax-Wendroff多步方法,建立一类新的显式和隐式相结合的多步格式,并以此为基础提出了一类显隐多步-小波-Galerkin方法,可以用来求解依赖时间的偏微分方程.不同于Taylor-Galerkin方法,文中的方案在提高时间离散精度时不包含任何新的... 推广Lax-Wendroff多步方法,建立一类新的显式和隐式相结合的多步格式,并以此为基础提出了一类显隐多步-小波-Galerkin方法,可以用来求解依赖时间的偏微分方程.不同于Taylor-Galerkin方法,文中的方案在提高时间离散精度时不包含任何新的高阶导数.由于引入了隐式部分,与传统的多步方法相比该方案有更好的稳定性,适合于求解非线性偏微分方程,理论分析和数值例子都说明了方法的有效性. 展开更多
关键词 多步方法 小波-Galerkn 热传导方程 非线性Burgers方程
下载PDF
线性Sobolev方程的半离散H^1-Galerkin混合有限元分析 被引量:1
18
作者 原华丽 《山东师范大学学报(自然科学版)》 CAS 2005年第2期14-15,共2页
给出了线性Sobolev方程初边值问题的半离散H1-Galerkin混合有限元格式.通过误差分析,得到了未知函数的L2模和梯度函数的散度空间模的最优阶误差估计.
关键词 SOBOLEV方程 H^1-galerkin混合有限元法 半离散格式 误差分析
下载PDF
阻尼Sine-Gordon方程的H^1-Galerkin混合元方法数值解(英文) 被引量:14
19
作者 刘洋 李宏 《应用数学》 CSCD 北大核心 2009年第3期579-588,共10页
利用H1-Galerkin混合有限元方法讨论阻尼Sine-Gordon方程,得到一维情况下半离散和全离散格式的最优阶误差估计,并且推广应用到二维和三维情况,而且不用验证LBB相容性条件.
关键词 SINE-GORDON方程 H1-galerkin混合有限元法 LBB相容性条件 全离散格式 误差估计
下载PDF
一维椭圆边值问题的自适应Petrov-Galerkin方法
20
作者 谢伟松 孙澈 《天津大学学报(自然科学与工程技术版)》 CSCD 2000年第1期122-128,共7页
讨论了一维椭圆边值问题的基于最佳检验空间之自适应PetrovGalerkin方法,证明了PetrovGalerkin有限元解的E超收敛性,给出了方法误差的局部后验估计,建立了相应的自适应策略.利用椭圆问题的上述结果,对一维非定常对流占优扩散问题,构造... 讨论了一维椭圆边值问题的基于最佳检验空间之自适应PetrovGalerkin方法,证明了PetrovGalerkin有限元解的E超收敛性,给出了方法误差的局部后验估计,建立了相应的自适应策略.利用椭圆问题的上述结果,对一维非定常对流占优扩散问题,构造了特征PetrovGalerkin自适应算法. 展开更多
关键词 椭圆边值问题 P-G法 有限元 自适应算法
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部