In this paper, we investigate the Galois connections between two partially ordered objects in an arbitrary elementary topos. Some characterizations of Galois adjunctions which is similar to the classical case are obta...In this paper, we investigate the Galois connections between two partially ordered objects in an arbitrary elementary topos. Some characterizations of Galois adjunctions which is similar to the classical case are obtained by means of the diagram proof. This shows that the diagram method can be used to reconstruct the classical order theory in an arbitrary elementary topos.展开更多
In this paper,we discuss the related properties of some particular derivations in semihoops and give some characterizations of them.Then,we prove that every Heyting algebra is isomorphic to the algebra of all multipli...In this paper,we discuss the related properties of some particular derivations in semihoops and give some characterizations of them.Then,we prove that every Heyting algebra is isomorphic to the algebra of all multiplicative derivations and show that every Boolean algebra is isomorphic to the algebra of all implicative derivations.Finally,we show that the sets of multiplicative and implicative derivations on bounded regular idempotent semihoops are in oneto-one correspondence.展开更多
In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/An a right H*-Galois extension. The...In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/An a right H*-Galois extension. The authors prove that, if An is a separable kalgebra, then for any right coideal subalgebra B of H, the B-invariants AB = {a ∈ A | b · a = ε(b)a, Ab ε B} is a separable k-algebra. They also establish a Galois connection between right coideal subalgebras of H and separable subalgebras of A containing AH as in the classical case. The results are applied to the case H = (kG)* for a finite group G to get a Galois 1-1 correspondence.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No.10731050)
文摘In this paper, we investigate the Galois connections between two partially ordered objects in an arbitrary elementary topos. Some characterizations of Galois adjunctions which is similar to the classical case are obtained by means of the diagram proof. This shows that the diagram method can be used to reconstruct the classical order theory in an arbitrary elementary topos.
基金Supported by the National Natural Science Foundation of China(12271319).
文摘In this paper,we discuss the related properties of some particular derivations in semihoops and give some characterizations of them.Then,we prove that every Heyting algebra is isomorphic to the algebra of all multiplicative derivations and show that every Boolean algebra is isomorphic to the algebra of all implicative derivations.Finally,we show that the sets of multiplicative and implicative derivations on bounded regular idempotent semihoops are in oneto-one correspondence.
基金supported by the National Natural Science Foundation of China(No.11331006)
文摘In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/An a right H*-Galois extension. The authors prove that, if An is a separable kalgebra, then for any right coideal subalgebra B of H, the B-invariants AB = {a ∈ A | b · a = ε(b)a, Ab ε B} is a separable k-algebra. They also establish a Galois connection between right coideal subalgebras of H and separable subalgebras of A containing AH as in the classical case. The results are applied to the case H = (kG)* for a finite group G to get a Galois 1-1 correspondence.