In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/An a right H*-Galois extension. The...In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/An a right H*-Galois extension. The authors prove that, if An is a separable kalgebra, then for any right coideal subalgebra B of H, the B-invariants AB = {a ∈ A | b · a = ε(b)a, Ab ε B} is a separable k-algebra. They also establish a Galois connection between right coideal subalgebras of H and separable subalgebras of A containing AH as in the classical case. The results are applied to the case H = (kG)* for a finite group G to get a Galois 1-1 correspondence.展开更多
Let H be a cosemisimple Hopf algebra over a field k, and π : A→ H be a surjective cocentral bialgebra homomorphism of bialgebras. The authors prove that if A is Galois over its coinvariants B=LH Ker π and B is a s...Let H be a cosemisimple Hopf algebra over a field k, and π : A→ H be a surjective cocentral bialgebra homomorphism of bialgebras. The authors prove that if A is Galois over its coinvariants B=LH Ker π and B is a sub-Hopf algebra of A, then A is itself a Hopf algebra. This generalizes a result of Cegarra [3] on group-graded algebras.展开更多
First, some properties of H separable rings are discussed, and it is shown that the H separable ring A can be represented as the tensor product of its subrings under certain conditions. Secondly, a neces...First, some properties of H separable rings are discussed, and it is shown that the H separable ring A can be represented as the tensor product of its subrings under certain conditions. Secondly, a necessary and sufficient condition is obtained for a Hopf Galois extension A/B to be H separable. Finally, some equivalent conditions are got for an H separable ring A to be a Hopf Galois extension over a certain subring B .展开更多
In this paper we obtain a criterion under which the bijectivity of the canonical morphism of a weak Galois extension associated to a weak invertible entwining structure is equivalent to the existence of a strong conne...In this paper we obtain a criterion under which the bijectivity of the canonical morphism of a weak Galois extension associated to a weak invertible entwining structure is equivalent to the existence of a strong connection form. Also we obtain an explicit formula for a strong connection under equivariant projective conditions or under coseparability conditions.展开更多
In this note we first introduce the finite weak Herstein condition, which is a property that holds for every finite field. For a field F satisfying the finite weak Herstein condition, we then characterize whether all ...In this note we first introduce the finite weak Herstein condition, which is a property that holds for every finite field. For a field F satisfying the finite weak Herstein condition, we then characterize whether all the finite-dimensional division F-algebras are commutative. This gives an alternate proof of Wedderburn's Theorem.展开更多
Let H be a Hopf π-coalgebra over a commutative ring k with bijective antipode S, and A and B right π-H-comodulelike algebras. We show that the pair of adjoint functors (F3 = A Bop A□ HBop -,G3 = (-)coH) betwee...Let H be a Hopf π-coalgebra over a commutative ring k with bijective antipode S, and A and B right π-H-comodulelike algebras. We show that the pair of adjoint functors (F3 = A Bop A□ HBop -,G3 = (-)coH) between the categories A□HBopM and AMπB-H is a pair of inverse equivalences, when A is a faithfully flat π-H-Galois extension. Furthermore, the categories Moritaπ-H(A,B) and Morita □π-H(AcoH,BcoH) are equivalent, if A and B are faithfully flat π-H-Galois extensions.展开更多
基金supported by the National Natural Science Foundation of China(No.11331006)
文摘In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/An a right H*-Galois extension. The authors prove that, if An is a separable kalgebra, then for any right coideal subalgebra B of H, the B-invariants AB = {a ∈ A | b · a = ε(b)a, Ab ε B} is a separable k-algebra. They also establish a Galois connection between right coideal subalgebras of H and separable subalgebras of A containing AH as in the classical case. The results are applied to the case H = (kG)* for a finite group G to get a Galois 1-1 correspondence.
文摘Let H be a cosemisimple Hopf algebra over a field k, and π : A→ H be a surjective cocentral bialgebra homomorphism of bialgebras. The authors prove that if A is Galois over its coinvariants B=LH Ker π and B is a sub-Hopf algebra of A, then A is itself a Hopf algebra. This generalizes a result of Cegarra [3] on group-graded algebras.
文摘First, some properties of H separable rings are discussed, and it is shown that the H separable ring A can be represented as the tensor product of its subrings under certain conditions. Secondly, a necessary and sufficient condition is obtained for a Hopf Galois extension A/B to be H separable. Finally, some equivalent conditions are got for an H separable ring A to be a Hopf Galois extension over a certain subring B .
基金Supported by Ministerio de Educació n, Xunta de Galicia and by FEDER (Grant Nos. MTM2010-15634,MTM2009-14464-C02-01, PGIDT07PXB322079PR)
文摘In this paper we obtain a criterion under which the bijectivity of the canonical morphism of a weak Galois extension associated to a weak invertible entwining structure is equivalent to the existence of a strong connection form. Also we obtain an explicit formula for a strong connection under equivariant projective conditions or under coseparability conditions.
文摘In this note we first introduce the finite weak Herstein condition, which is a property that holds for every finite field. For a field F satisfying the finite weak Herstein condition, we then characterize whether all the finite-dimensional division F-algebras are commutative. This gives an alternate proof of Wedderburn's Theorem.
基金Supported by the Key Programs of Jiaxing University (Grant No. 70110X03BL)Scientific Research Foundation of Jiaxing University (Grant No.70509015)
文摘Let H be a Hopf π-coalgebra over a commutative ring k with bijective antipode S, and A and B right π-H-comodulelike algebras. We show that the pair of adjoint functors (F3 = A Bop A□ HBop -,G3 = (-)coH) between the categories A□HBopM and AMπB-H is a pair of inverse equivalences, when A is a faithfully flat π-H-Galois extension. Furthermore, the categories Moritaπ-H(A,B) and Morita □π-H(AcoH,BcoH) are equivalent, if A and B are faithfully flat π-H-Galois extensions.