The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integra...The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integrating TFM initiatives and allocate the limited airspace resources to these airlines equitably and efficiently is still a problem.The air traffic management(ATM)authority aims to minimizing the systemic costs of congested airspaces.And the airlines are self-interested and profit-oriented.Being incorporated into the collaborative decision making(CDM)process,the airlines can influence the rescheduling decisions to profit themselves.The airlines maybe hide the flight information that is disadvantageous to them,but is necessary to the optimal system decision.To realize the coincidence goal between the ATM authority and airlines for the efficient,and equitable allocation of airspace resources,this paper provides an auction-based market method to solve the congestion airspace problem under the pre-tactic and tactic stage of air traffic flow management.Through a simulation experiment,the rationing results show that the auction method can decrease the total delay costs of flights in the congested airspace compared with both the first schedule first service(FSFS)tactic and the ration by schedule(RBS)tactic.Finally,the analysis results indicate that if reallocate the charges from the auction to the airlines according to the proportion of their disrupted flights,the auction mechanism can allocate the airspace resource in economy equitably and decrease the delay losses of the airlines compared with the results of the FSFS tactic.展开更多
It is well established that Nash equilibrium exists within the framework of mixed strategies in strategic-form non-cooperative games. However, finding the Nash equilibrium generally belongs to the class of problems kn...It is well established that Nash equilibrium exists within the framework of mixed strategies in strategic-form non-cooperative games. However, finding the Nash equilibrium generally belongs to the class of problems known as PPAD (Polynomial Parity Argument on Directed graphs), for which no polynomial-time solution methods are known, even for two-player games. This paper demonstrates that in fixed-sum two-player games (including zero-sum games), the Nash equilibrium forms a convex set, and has a unique expected payoff. Furthermore, these equilibria are Pareto optimal. Additionally, it is shown that the Nash equilibrium of fixed-sum two-player games can theoretically be found in polynomial time using the principal-dual interior point method, a solution method of linear programming.展开更多
This article seeks to make a constructive advance in jurisprudential theory by employing the unified analytical framework of modern social science. We first outline the main ideas of individual rational decision-makin...This article seeks to make a constructive advance in jurisprudential theory by employing the unified analytical framework of modern social science. We first outline the main ideas of individual rational decision-making and game theory and of social choice and mechanism design, before offering a preliminary discussion of their application to legal issues. The core thesis is that the law in combination with other social norms provides institutional incentives to all actors in society. Legislators' social justice objectives can be reasonably enforced only as a result of behavioral equilibrium in the social game.展开更多
The solvability of the coupled Riccati differential equations appearing in the differential game approach to the formation control problem is vital to the finite horizon Nash equilibrium solution.These equations(if so...The solvability of the coupled Riccati differential equations appearing in the differential game approach to the formation control problem is vital to the finite horizon Nash equilibrium solution.These equations(if solvable)can be solved numerically by using the terminal value and the backward iteration.To investigate the solvability and solution of these equations the formation control problem as the differential game is replaced by a discrete-time dynamic game.The main contributions of this paper are as follows.First,the existence of Nash equilibrium controls for the discretetime formation control problem is shown.Second,a backward iteration approximate solution to the coupled Riccati differential equations in the continuous-time differential game is developed.An illustrative example is given to justify the models and solution.展开更多
Unbalanced agricultural production decision becomes the great block that influences the effective distribution of social resources, national grain security, social stability and economic development. This paper took t...Unbalanced agricultural production decision becomes the great block that influences the effective distribution of social resources, national grain security, social stability and economic development. This paper took the game theory as an analyzed tool to describe the interactional processes among the peasants, and set up the game theory model of independent decision and joint decision by peasants. It was shown that the government's positive guide and the market environment macroscopically controlled by the government could effectively increased the peasants' income展开更多
The fuzzy non-cooperative game with fuzzy payoff function is studied. Based on fuzzy set theory with game theory, the fuzzy Nash equilibrium of fuzzy non-cooperative games is proposed. Most of researchers rank fuzzy n...The fuzzy non-cooperative game with fuzzy payoff function is studied. Based on fuzzy set theory with game theory, the fuzzy Nash equilibrium of fuzzy non-cooperative games is proposed. Most of researchers rank fuzzy number by its center of gravity or by the real number with its maximal membership. By reducing fuzzy number into a real number, we lose much fuzzy information that should be kept during the operations between fuzzy numbers. The fuzzy quantities or alternatives are ordered directly by Yuan's binary fuzzy ordering relation. In doing so, the existence of fuzzy Nash equilibrium for fuzzy non-cooperative games is shown based on the utility function and the crisp Nash theorem. Finally, an illustrative example in traffic flow patterns of equilibrium is given in order to show the detailed calculation process of fuzzy Nash equilibrium.展开更多
A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for q...A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.展开更多
In this work, an improvement of the results presented by [1] Abellanas et al. (Weak Equilibrium in a Spatial Model. International Journal of Game Theory, 40(3), 449-459) is discussed. Concretely, this paper investigat...In this work, an improvement of the results presented by [1] Abellanas et al. (Weak Equilibrium in a Spatial Model. International Journal of Game Theory, 40(3), 449-459) is discussed. Concretely, this paper investigates an abstract game of competition between two players that want to earn the maximum number of points from a finite set of points in the plane. It is assumed that the distribution of these points is not uniform, so an appropriate weight to each position is assigned. A definition of equilibrium which is weaker than the classical one is included in order to avoid the uniqueness of the equilibrium position typical of the Nash equilibrium in these kinds of games. The existence of this approximated equilibrium in the game is analyzed by means of computational geometry techniques.展开更多
A scalar equilibrium (SE) is defined for n-person prescriptive games in normal form. When a decision criterion (notion of rationality) is either agreed upon by the players or prescribed by an external arbiter, the res...A scalar equilibrium (SE) is defined for n-person prescriptive games in normal form. When a decision criterion (notion of rationality) is either agreed upon by the players or prescribed by an external arbiter, the resulting decision process is modeled by a suitable scalar transformation (utility function). Each n-tuple of von Neumann-Morgenstern utilities is transformed into a nonnegative scalar value between 0 and 1. Any n-tuple yielding a largest scalar value determines an SE, which is always a pure strategy profile. SEs can be computed much faster than Nash equilibria, for example;and the decision criterion need not be based on the players’ selfishness. To illustrate the SE, we define a compromise equilibrium, establish its Pareto optimality, and present examples comparing it to other solution concepts.展开更多
In economics, buyers and sellers are usually the main sides in a market. Game theory can perfectly model decisions behind each “player” and calculate an outcome that benefits both sides. However, the use of game the...In economics, buyers and sellers are usually the main sides in a market. Game theory can perfectly model decisions behind each “player” and calculate an outcome that benefits both sides. However, the use of game theory is not lim-ited to economics. In this paper, I will introduce the mathematical model of general sum game, solutions and theorems surrounding game theory, and its real life applications in many different scenarios.展开更多
This work concentrates on simultaneous move non-cooperating quantum games. Part of it is evidently not new, but it is included for the sake self consistence, as it is devoted to introduction of the mathematical and ph...This work concentrates on simultaneous move non-cooperating quantum games. Part of it is evidently not new, but it is included for the sake self consistence, as it is devoted to introduction of the mathematical and physical grounds of the pertinent topics, and the way in which a simple classical game is modified to become a quantum game (a procedure referred to as a quantization of a classical game). The connection between game theory and information science is briefly stressed, and the role of quantum entanglement (that plays a central role in the theory of quantum games), is exposed. Armed with these tools, we investigate some basic concepts like the existence (or absence) of a pure strategy and mixed strategy Nash equilibrium and its relation with the degree of entanglement. The main results of this work are as follows: 1) Construction of a numerical algorithm based on the method of best response functions, designed to search for pure strategy Nash equilibrium in quantum games. The formalism is based on the discretization of a continuous variable into a mesh of points, and can be applied to quantum games that are built upon two-players two-strategies classical games, based on the method of best response functions. 2) Application of this algorithm to study the question of how the existence of pure strategy Nash equilibrium is related to the degree of entanglement (specified by a continuous parameter γ ). It is shown that when the classical game G<sub>C</sub> has a pure strategy Nash equilibrium that is not Pareto efficient, then the quantum game G<sub>Q</sub> with maximal entanglement (γ = π/2) has no pure strategy Nash equilibrium. By studying a non-symmetric prisoner dilemma game, it is found that there is a critical value 0γ<sub>c</sub> such that for γγ<sub>c</sub> there is a pure strategy Nash equilibrium and for γ≥γ<sub>c </sub>there is no pure strategy Nash equilibrium. The behavior of the two payoffs as function of γ starts at that of the classical ones at (D, D) and approaches the cooperative classical ones at (C, C) (C = confess, D = don’t confess). 3) We then study Bayesian quantum games and show that under certain conditions, there is a pure strategy Nash equilibrium in such games even when entanglement is maximal. 4) We define the basic ingredients of a quantum game based on a two-player three strategies classical game. This requires the introduction of trits (instead of bits) and quantum trits (instead of quantum bits). It is proved that in this quantum game, there is no classical commensurability in the sense that the classical strategies are not obtained as a special case of the quantum strategies.展开更多
基金Supported by the National High Technology Research and Development Program of China("863"Program)(20060AA12A105)the Chinese Airspace Management Commission Researching Program(GKG200802006)~~
文摘The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integrating TFM initiatives and allocate the limited airspace resources to these airlines equitably and efficiently is still a problem.The air traffic management(ATM)authority aims to minimizing the systemic costs of congested airspaces.And the airlines are self-interested and profit-oriented.Being incorporated into the collaborative decision making(CDM)process,the airlines can influence the rescheduling decisions to profit themselves.The airlines maybe hide the flight information that is disadvantageous to them,but is necessary to the optimal system decision.To realize the coincidence goal between the ATM authority and airlines for the efficient,and equitable allocation of airspace resources,this paper provides an auction-based market method to solve the congestion airspace problem under the pre-tactic and tactic stage of air traffic flow management.Through a simulation experiment,the rationing results show that the auction method can decrease the total delay costs of flights in the congested airspace compared with both the first schedule first service(FSFS)tactic and the ration by schedule(RBS)tactic.Finally,the analysis results indicate that if reallocate the charges from the auction to the airlines according to the proportion of their disrupted flights,the auction mechanism can allocate the airspace resource in economy equitably and decrease the delay losses of the airlines compared with the results of the FSFS tactic.
文摘It is well established that Nash equilibrium exists within the framework of mixed strategies in strategic-form non-cooperative games. However, finding the Nash equilibrium generally belongs to the class of problems known as PPAD (Polynomial Parity Argument on Directed graphs), for which no polynomial-time solution methods are known, even for two-player games. This paper demonstrates that in fixed-sum two-player games (including zero-sum games), the Nash equilibrium forms a convex set, and has a unique expected payoff. Furthermore, these equilibria are Pareto optimal. Additionally, it is shown that the Nash equilibrium of fixed-sum two-player games can theoretically be found in polynomial time using the principal-dual interior point method, a solution method of linear programming.
文摘This article seeks to make a constructive advance in jurisprudential theory by employing the unified analytical framework of modern social science. We first outline the main ideas of individual rational decision-making and game theory and of social choice and mechanism design, before offering a preliminary discussion of their application to legal issues. The core thesis is that the law in combination with other social norms provides institutional incentives to all actors in society. Legislators' social justice objectives can be reasonably enforced only as a result of behavioral equilibrium in the social game.
文摘The solvability of the coupled Riccati differential equations appearing in the differential game approach to the formation control problem is vital to the finite horizon Nash equilibrium solution.These equations(if solvable)can be solved numerically by using the terminal value and the backward iteration.To investigate the solvability and solution of these equations the formation control problem as the differential game is replaced by a discrete-time dynamic game.The main contributions of this paper are as follows.First,the existence of Nash equilibrium controls for the discretetime formation control problem is shown.Second,a backward iteration approximate solution to the coupled Riccati differential equations in the continuous-time differential game is developed.An illustrative example is given to justify the models and solution.
文摘Unbalanced agricultural production decision becomes the great block that influences the effective distribution of social resources, national grain security, social stability and economic development. This paper took the game theory as an analyzed tool to describe the interactional processes among the peasants, and set up the game theory model of independent decision and joint decision by peasants. It was shown that the government's positive guide and the market environment macroscopically controlled by the government could effectively increased the peasants' income
基金supported by the National Natural Science Foundation of China (70771010)
文摘The fuzzy non-cooperative game with fuzzy payoff function is studied. Based on fuzzy set theory with game theory, the fuzzy Nash equilibrium of fuzzy non-cooperative games is proposed. Most of researchers rank fuzzy number by its center of gravity or by the real number with its maximal membership. By reducing fuzzy number into a real number, we lose much fuzzy information that should be kept during the operations between fuzzy numbers. The fuzzy quantities or alternatives are ordered directly by Yuan's binary fuzzy ordering relation. In doing so, the existence of fuzzy Nash equilibrium for fuzzy non-cooperative games is shown based on the utility function and the crisp Nash theorem. Finally, an illustrative example in traffic flow patterns of equilibrium is given in order to show the detailed calculation process of fuzzy Nash equilibrium.
文摘A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.
文摘In this work, an improvement of the results presented by [1] Abellanas et al. (Weak Equilibrium in a Spatial Model. International Journal of Game Theory, 40(3), 449-459) is discussed. Concretely, this paper investigates an abstract game of competition between two players that want to earn the maximum number of points from a finite set of points in the plane. It is assumed that the distribution of these points is not uniform, so an appropriate weight to each position is assigned. A definition of equilibrium which is weaker than the classical one is included in order to avoid the uniqueness of the equilibrium position typical of the Nash equilibrium in these kinds of games. The existence of this approximated equilibrium in the game is analyzed by means of computational geometry techniques.
文摘A scalar equilibrium (SE) is defined for n-person prescriptive games in normal form. When a decision criterion (notion of rationality) is either agreed upon by the players or prescribed by an external arbiter, the resulting decision process is modeled by a suitable scalar transformation (utility function). Each n-tuple of von Neumann-Morgenstern utilities is transformed into a nonnegative scalar value between 0 and 1. Any n-tuple yielding a largest scalar value determines an SE, which is always a pure strategy profile. SEs can be computed much faster than Nash equilibria, for example;and the decision criterion need not be based on the players’ selfishness. To illustrate the SE, we define a compromise equilibrium, establish its Pareto optimality, and present examples comparing it to other solution concepts.
文摘In economics, buyers and sellers are usually the main sides in a market. Game theory can perfectly model decisions behind each “player” and calculate an outcome that benefits both sides. However, the use of game theory is not lim-ited to economics. In this paper, I will introduce the mathematical model of general sum game, solutions and theorems surrounding game theory, and its real life applications in many different scenarios.
文摘This work concentrates on simultaneous move non-cooperating quantum games. Part of it is evidently not new, but it is included for the sake self consistence, as it is devoted to introduction of the mathematical and physical grounds of the pertinent topics, and the way in which a simple classical game is modified to become a quantum game (a procedure referred to as a quantization of a classical game). The connection between game theory and information science is briefly stressed, and the role of quantum entanglement (that plays a central role in the theory of quantum games), is exposed. Armed with these tools, we investigate some basic concepts like the existence (or absence) of a pure strategy and mixed strategy Nash equilibrium and its relation with the degree of entanglement. The main results of this work are as follows: 1) Construction of a numerical algorithm based on the method of best response functions, designed to search for pure strategy Nash equilibrium in quantum games. The formalism is based on the discretization of a continuous variable into a mesh of points, and can be applied to quantum games that are built upon two-players two-strategies classical games, based on the method of best response functions. 2) Application of this algorithm to study the question of how the existence of pure strategy Nash equilibrium is related to the degree of entanglement (specified by a continuous parameter γ ). It is shown that when the classical game G<sub>C</sub> has a pure strategy Nash equilibrium that is not Pareto efficient, then the quantum game G<sub>Q</sub> with maximal entanglement (γ = π/2) has no pure strategy Nash equilibrium. By studying a non-symmetric prisoner dilemma game, it is found that there is a critical value 0γ<sub>c</sub> such that for γγ<sub>c</sub> there is a pure strategy Nash equilibrium and for γ≥γ<sub>c </sub>there is no pure strategy Nash equilibrium. The behavior of the two payoffs as function of γ starts at that of the classical ones at (D, D) and approaches the cooperative classical ones at (C, C) (C = confess, D = don’t confess). 3) We then study Bayesian quantum games and show that under certain conditions, there is a pure strategy Nash equilibrium in such games even when entanglement is maximal. 4) We define the basic ingredients of a quantum game based on a two-player three strategies classical game. This requires the introduction of trits (instead of bits) and quantum trits (instead of quantum bits). It is proved that in this quantum game, there is no classical commensurability in the sense that the classical strategies are not obtained as a special case of the quantum strategies.