Vs2010 is used as the development environment, so as to realize the visual programming of Game of Life, and explore the life evolution process of cell group in different sizes and states. According to cell forms such ...Vs2010 is used as the development environment, so as to realize the visual programming of Game of Life, and explore the life evolution process of cell group in different sizes and states. According to cell forms such as circulation and disappearance, it reflects the complex changes of Game of Life. Setting different initial states through the code and observing the final generated graphics, you can see that the complex and simple initial states can achieve the same result. It is also concluded that a suitable initial state can reach the final state in fewer steps, which can greatly simplify the evolution process. The entire system is completely closed and has certain limitations. Meanwhile, the evolution process of symmetrical initial state is also symmetrically distributed. I introduce random quantities into the system to make the simulation results closer to the actual situation. By setting a random initial state to make the chaotic and disorderly situation simple, the concept of “determinism and randomness” can be better expressed. In the process of change, some local structures remain fixed, and some local structures present periodic cycles. These structures interact in complex ways to understand the concept of “whole and part”. The game of life enlightens us: the simplest logical rules can produce complex and interesting activities, and a complex system may be iterated by simple rules.展开更多
文摘Vs2010 is used as the development environment, so as to realize the visual programming of Game of Life, and explore the life evolution process of cell group in different sizes and states. According to cell forms such as circulation and disappearance, it reflects the complex changes of Game of Life. Setting different initial states through the code and observing the final generated graphics, you can see that the complex and simple initial states can achieve the same result. It is also concluded that a suitable initial state can reach the final state in fewer steps, which can greatly simplify the evolution process. The entire system is completely closed and has certain limitations. Meanwhile, the evolution process of symmetrical initial state is also symmetrically distributed. I introduce random quantities into the system to make the simulation results closer to the actual situation. By setting a random initial state to make the chaotic and disorderly situation simple, the concept of “determinism and randomness” can be better expressed. In the process of change, some local structures remain fixed, and some local structures present periodic cycles. These structures interact in complex ways to understand the concept of “whole and part”. The game of life enlightens us: the simplest logical rules can produce complex and interesting activities, and a complex system may be iterated by simple rules.