The curvature of the γ-ray spectrum in blazars may reflect the intrinsic distribution of emitting electrons, which will further give some information on the possible acceleration and cooling processes in the emitting...The curvature of the γ-ray spectrum in blazars may reflect the intrinsic distribution of emitting electrons, which will further give some information on the possible acceleration and cooling processes in the emitting region. The γ-ray spectra of Fermi blazars are normally fitted either by a single power-law(PL) or a log-normal(call Logarithmic Parabola, LP) form. The possible reason for this difference is not clear. We statistically explore this issue based on the different observational properties of 1419 Fermi blazars in the 3 LAC Clean Sample. We find that the γ-ray flux(100 Me V–100 Ge V) and variability index follow bimodal distributions for PL and LP blazars, where the γ-ray flux and variability index show a positive correlation. However, the distributions of γ-ray luminosity and redshift follow a unimodal distribution. Our results suggest that the bimodal distribution of γ-ray fluxes for LP and PL blazars may not be intrinsic and all blazars may have an intrinsically curved γ-ray spectrum, and the PL spectrum is just caused by the fitting effect due to less photons.展开更多
With the assistance of the identified/associated sources in the second Fermi Large Area Telescope (LAT) catalog, we analyze and resolve the spatial distribution and the distributions of the gamma-ray spectral and va...With the assistance of the identified/associated sources in the second Fermi Large Area Telescope (LAT) catalog, we analyze and resolve the spatial distribution and the distributions of the gamma-ray spectral and variability indices of the remaining 575 unassociated Fermi LAT sources. Consequently, it is suggested that the unassociated sources could statistically consist of Galactic supernova remnants/pulsar wind nebulae, BL Lacertae objects, fiat spectrum radio quasars and other types of active galaxies with fractions of 25%, 29%, 41% and 5%, respectively.展开更多
When the axis of a gamma-ray burst (GRB) does not coincide with the spin axis of its source, there may result a ring-shaped jet. Using some refined jet dynamics, we calculate multi-wavelength afterglow light curves ...When the axis of a gamma-ray burst (GRB) does not coincide with the spin axis of its source, there may result a ring-shaped jet. Using some refined jet dynamics, we calculate multi-wavelength afterglow light curves for such ring-shaped jets. In the R-band we find an obvious break in the afterglow light curve due to the beaming effect and the break is affected by many parameters, such as the electron energy fraction ζe, the magnetic energy fraction ζB^2, the width of ring △θ and the medium number density n. The overall light curve can be divided into three power-law stages, i.e., an ultra-relativistic stage, an after-break stage and a deep Newtonian stage. For each stage the power-law index is larger in the ring-shaped jet than in the corresponding conical jet.展开更多
There is strong evidence for the existence of black holes (BHs) in some X-ray binaries and in most galactic nuclei based on different types of measurement, but black holes have not been definitely identified for the l...There is strong evidence for the existence of black holes (BHs) in some X-ray binaries and in most galactic nuclei based on different types of measurement, but black holes have not been definitely identified for the lack of very firm observational evidence up to now. Because direct evidence for BHs should come from determination of strong gravitational redshift, we expect an object can fall into the region near the BH horizon where radiation can be detected. Therefore the object must be a compact star such as a neutron star (NS), and intense astrophysical processes will release highly energetic radiation that is transient and fast-varying. These characteristics may point to the observed gamma-ray bursts (GRBs). Recent observations of iron lines suggest that afterglows of GRBs show properties similar to those observed in active galactic nuclei (AGNs), implying that the GRBs may originate from intense events related to black holes. A model for GRBs and after-glows is proposed here to obtain the range of gravitational redshifts (zg) of GRBs with known cosmological redshifts. Here, we provide a new method that, with a search for high-energy emission lines (X- or -γ-rays) in GRBs, one can determine the gravitational redshift. We expect zg to be 0.5 or even larger, so we can rule out the possibility of other compact objects such as NSs, and identify the central progenitors of GRBs as black holes.展开更多
We performed detailed time-resolved spectroscopy of bright tong gamma- ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we ...We performed detailed time-resolved spectroscopy of bright tong gamma- ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we also use a model consisting of a black body and a power law to fit the spectra. We find that for the latter model there are indications of an additional soft component in the spectra. While previous studies have shown that such models are required for GRB 090902B, here we find that a composite spectral model consisting of two blackbodies and a power law adequately fits the data of all the three bright GRBs. We investigate the evolution of the spectral parameters and find several interesting features that appear in all three GRBs, like (a) temperatures of the blackbodies are strongly correlated with each other, (b) fluxes in the black body components are strongly correlated with each other, (c) the temperatures of the black body trace the profile of the individual pulses of the GRBs, and (d) the characteristics of power law components like the spectral index and the delayed onset bear a close similarity to the emission characteristics in the GeV regions. We discuss the implications of these results and the possibility of identifying the radiation mechanisms during the prompt emission of GRBs.展开更多
Using the HST observation data of BL Lac objects by Urry et al. and γ-ray observation data, we find that there is a correlation between Fγ and Fonuclei forγ-ray-loud BL Lac objects (correlation coefficients: 7γ=0....Using the HST observation data of BL Lac objects by Urry et al. and γ-ray observation data, we find that there is a correlation between Fγ and Fonuclei forγ-ray-loud BL Lac objects (correlation coefficients: 7γ=0.63,p = 4.0 × 10-2), but no correlation between Fγ and Fohost, where Fonuclei and Fohost are the fluxes of nuclei and host galaxy in V-band. For 19γ-ray-loud BL Lac objects with observed spectral index in multi-wavebands, the spectral index correlations between any two bands are as follow: (1) there is a strong correlation between aγ and aK for 15 BL Lac objects(γ = 0.84,p = 3.11 × 10-4); (2) the correlation between aγ and ao for 12 BL Lac objects isγ = 0.82, p = 1.5 × 10-3; (3) there is no correlation between a7 and ax for 16 BL Lac objects. The results, together with characteristic double-humped shape of their SEDs, show that the synchrotron self-Compton mechanism might be a main mechanism for theγ-ray emission of the BL Lac objects. The electrons emitting JR and optical radiation via synchrotron are also responsible for upscattering these photons toγ-rays, and a variability in IR-optical regime should be accompanied by a change in theγ-rays.展开更多
The remnants of two gamma-ray bursts, GRB 030329 and GRB 041227, have been resolved by Very Long Baseline Interferometry observations. The radio counterparts were observed to expand with time. These observations provi...The remnants of two gamma-ray bursts, GRB 030329 and GRB 041227, have been resolved by Very Long Baseline Interferometry observations. The radio counterparts were observed to expand with time. These observations provide an important way to test the dynamics of the standard fireball model. We show that the observed size evolution of these two events cannot be explained by a simple jet model, rather, it can be satisfactorily explained by the two-component jet model. It strongly hints that gamma-ray burst ejecta may have complicated structures.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11763005,11622324,11573009,11763002,U1431111 and U1431126)supported by the Research Foundation for Advanced Talents of Liupanshui Normal University(LPSSYKYJJ201506)+3 种基金the Open Fund of Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processingthe Physical Electronic Key Discipline of Guizhou Province(ZDXK201535)the Natural Science Foundation of the Department of Education of Guizhou Province(QJHKYZ[2015]455)the Research Foundation of Liupanshui Normal University(LPSSYDXS1514 and LPSSY201401)
文摘The curvature of the γ-ray spectrum in blazars may reflect the intrinsic distribution of emitting electrons, which will further give some information on the possible acceleration and cooling processes in the emitting region. The γ-ray spectra of Fermi blazars are normally fitted either by a single power-law(PL) or a log-normal(call Logarithmic Parabola, LP) form. The possible reason for this difference is not clear. We statistically explore this issue based on the different observational properties of 1419 Fermi blazars in the 3 LAC Clean Sample. We find that the γ-ray flux(100 Me V–100 Ge V) and variability index follow bimodal distributions for PL and LP blazars, where the γ-ray flux and variability index show a positive correlation. However, the distributions of γ-ray luminosity and redshift follow a unimodal distribution. Our results suggest that the bimodal distribution of γ-ray fluxes for LP and PL blazars may not be intrinsic and all blazars may have an intrinsically curved γ-ray spectrum, and the PL spectrum is just caused by the fitting effect due to less photons.
基金supported by the National Natural Science Foundation of China (Grant No. 11103004)the Foundation for the Authors of National Excellent Doctoral Dissertations of China (Grant No. 201225)
文摘With the assistance of the identified/associated sources in the second Fermi Large Area Telescope (LAT) catalog, we analyze and resolve the spatial distribution and the distributions of the gamma-ray spectral and variability indices of the remaining 575 unassociated Fermi LAT sources. Consequently, it is suggested that the unassociated sources could statistically consist of Galactic supernova remnants/pulsar wind nebulae, BL Lacertae objects, fiat spectrum radio quasars and other types of active galaxies with fractions of 25%, 29%, 41% and 5%, respectively.
基金the National Natural Science Foundation of China(Grants 10625313 and 10221001)
文摘When the axis of a gamma-ray burst (GRB) does not coincide with the spin axis of its source, there may result a ring-shaped jet. Using some refined jet dynamics, we calculate multi-wavelength afterglow light curves for such ring-shaped jets. In the R-band we find an obvious break in the afterglow light curve due to the beaming effect and the break is affected by many parameters, such as the electron energy fraction ζe, the magnetic energy fraction ζB^2, the width of ring △θ and the medium number density n. The overall light curve can be divided into three power-law stages, i.e., an ultra-relativistic stage, an after-break stage and a deep Newtonian stage. For each stage the power-law index is larger in the ring-shaped jet than in the corresponding conical jet.
基金This research is supported by the National Natural Science FOundation of China.
文摘There is strong evidence for the existence of black holes (BHs) in some X-ray binaries and in most galactic nuclei based on different types of measurement, but black holes have not been definitely identified for the lack of very firm observational evidence up to now. Because direct evidence for BHs should come from determination of strong gravitational redshift, we expect an object can fall into the region near the BH horizon where radiation can be detected. Therefore the object must be a compact star such as a neutron star (NS), and intense astrophysical processes will release highly energetic radiation that is transient and fast-varying. These characteristics may point to the observed gamma-ray bursts (GRBs). Recent observations of iron lines suggest that afterglows of GRBs show properties similar to those observed in active galactic nuclei (AGNs), implying that the GRBs may originate from intense events related to black holes. A model for GRBs and after-glows is proposed here to obtain the range of gravitational redshifts (zg) of GRBs with known cosmological redshifts. Here, we provide a new method that, with a search for high-energy emission lines (X- or -γ-rays) in GRBs, one can determine the gravitational redshift. We expect zg to be 0.5 or even larger, so we can rule out the possibility of other compact objects such as NSs, and identify the central progenitors of GRBs as black holes.
文摘We performed detailed time-resolved spectroscopy of bright tong gamma- ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we also use a model consisting of a black body and a power law to fit the spectra. We find that for the latter model there are indications of an additional soft component in the spectra. While previous studies have shown that such models are required for GRB 090902B, here we find that a composite spectral model consisting of two blackbodies and a power law adequately fits the data of all the three bright GRBs. We investigate the evolution of the spectral parameters and find several interesting features that appear in all three GRBs, like (a) temperatures of the blackbodies are strongly correlated with each other, (b) fluxes in the black body components are strongly correlated with each other, (c) the temperatures of the black body trace the profile of the individual pulses of the GRBs, and (d) the characteristics of power law components like the spectral index and the delayed onset bear a close similarity to the emission characteristics in the GeV regions. We discuss the implications of these results and the possibility of identifying the radiation mechanisms during the prompt emission of GRBs.
基金This work was financially supported by the National Natural Science FoUndation of ChinaNatural Science Foundation of YUJman
文摘Using the HST observation data of BL Lac objects by Urry et al. and γ-ray observation data, we find that there is a correlation between Fγ and Fonuclei forγ-ray-loud BL Lac objects (correlation coefficients: 7γ=0.63,p = 4.0 × 10-2), but no correlation between Fγ and Fohost, where Fonuclei and Fohost are the fluxes of nuclei and host galaxy in V-band. For 19γ-ray-loud BL Lac objects with observed spectral index in multi-wavebands, the spectral index correlations between any two bands are as follow: (1) there is a strong correlation between aγ and aK for 15 BL Lac objects(γ = 0.84,p = 3.11 × 10-4); (2) the correlation between aγ and ao for 12 BL Lac objects isγ = 0.82, p = 1.5 × 10-3; (3) there is no correlation between a7 and ax for 16 BL Lac objects. The results, together with characteristic double-humped shape of their SEDs, show that the synchrotron self-Compton mechanism might be a main mechanism for theγ-ray emission of the BL Lac objects. The electrons emitting JR and optical radiation via synchrotron are also responsible for upscattering these photons toγ-rays, and a variability in IR-optical regime should be accompanied by a change in theγ-rays.
基金Supported by the National Natural Science Foundation of China.
文摘The remnants of two gamma-ray bursts, GRB 030329 and GRB 041227, have been resolved by Very Long Baseline Interferometry observations. The radio counterparts were observed to expand with time. These observations provide an important way to test the dynamics of the standard fireball model. We show that the observed size evolution of these two events cannot be explained by a simple jet model, rather, it can be satisfactorily explained by the two-component jet model. It strongly hints that gamma-ray burst ejecta may have complicated structures.