Low background gamma spectrometry was used to measure the radionuclides activity of <sup>238</sup>U, <sup>232</sup>Th, and <sup>235</sup>U series as well as <sup>40</sup>...Low background gamma spectrometry was used to measure the radionuclides activity of <sup>238</sup>U, <sup>232</sup>Th, and <sup>235</sup>U series as well as <sup>40</sup>K and <sup>137</sup>Cs in a sediment sample. The goal of the study was to measure the <sup>238</sup>U (63.3 keV peak of <sup>234</sup>Th;1001 keV peak of <sup>234m</sup>Pa) and <sup>235</sup>U (143.76 keV, 163.33 keV, and 205.31 keV peaks) activity by low background gamma spectrometry in sediment sample. <sup>235</sup>U activity in environmental samples is difficult to accurately measure by gamma spectrometry due to its low abundance in nature and low gamma line intensities at 143.76 keV, 163.33 keV, and 205.31 keV. We have shown that by using low background gamma spectrometry, it is possible to accurately measure the <sup>235</sup>U activity in sediment samples. The <sup>235</sup>U activity was measured without using the major peak of 185.7 keV (I<sub>γ</sub> = 57.2%) which requires interference correction from 186.21 keV of <sup>226</sup>Ra. <sup>226</sup>Ra activity was determined by measuring <sup>222</sup>Rn daughters (<sup>214</sup>Pb and <sup>214</sup>Bi). The precision and accuracy of the gamma activity measurement in the sediment sample were verified by using the HPGe detectors with Certified Reference Material (CRM) Irish Sea Sediment (IAEA-385). The results obtained for the 63.33 keV energy line of <sup>234</sup>Th are compared with the 1001 keV energy line of <sup>234m</sup>Pa. The values of <sup>238</sup>U and <sup>235</sup>U activities, as well as <sup>40</sup>K, <sup>137</sup>Cs, and <sup>226</sup>Ra, agreed with the certificate values of CRM. The results show that the <sup>238</sup>U is in equilibrium with its daughters (<sup>234</sup>Th, <sup>234m</sup>Pa, and <sup>210</sup>Pb). <sup>232</sup>Th is also in equilibrium with its daughters (<sup>228</sup>Ra, <sup>212</sup>Pb, <sup>212</sup>Bi and <sup>208</sup>Tl). <sup>235</sup>U/<sup>238</sup>U activity ratio of 0.046 ± 0.007 in the sediment is constant in nature but fluctuates due to geological processes. A value of 0.055 ± 0.008 was found in our sediment sample.展开更多
The accelerator-generating 6.13 MeV pulsed Gamma by 19F(p, αγ)160 reaction usually synchronizes with an intense bremsstrahlung x-ray which has a maximum energy of 1 MeV. This paper proposes a new method, named the...The accelerator-generating 6.13 MeV pulsed Gamma by 19F(p, αγ)160 reaction usually synchronizes with an intense bremsstrahlung x-ray which has a maximum energy of 1 MeV. This paper proposes a new method, named the scattering and absorbing method, to diagnose the 6.13 MeV Gamma. This method includes two parts: the detector and a scatterer placed in front of the detector. The detector converts the Gamma to electrons and then collects the electrons by a scintillator. In order to restrain the interference of the low-energy background, the scintillator collects the electrons at a small angle. The scintillator is wrapped with electro-absorbing material to absorb the low-energy electrons generated by background x-rays. The theoretical sensitivity ratio of 6.13 MeV Gamma to 1 MeV x-rays is greater than 150. The scatterer is a pretreatment tool to scatter some background x-rays away from the radial beam before they enter the detector. By varying the length, the scatterer can reduce the background x-rays to an acceptable level for the detector.展开更多
Gamma-ray spectrometer(GRS) is used to detect the elemental abundances and distributions on the lunar surface.To derive the elemental abundances,it is vital to acquire background gamma rays except lunar gamma rays.So ...Gamma-ray spectrometer(GRS) is used to detect the elemental abundances and distributions on the lunar surface.To derive the elemental abundances,it is vital to acquire background gamma rays except lunar gamma rays.So GRS would observe background spectra in the course of earth-moon transfer on schedule.But in fact,GRS was not switched on in the course of flying toward the moon.After the CE-1 probe finished one-year mission,GRS car-ried out a test on background data on November 21?22,2008.The authors did conduct research on the methods of background deduction using 2105 hours of usable gamma-ray spectra acquired at the 200-km orbital height by the GRS and more than 5 hours of gamma-ray spectra acquired in the GRS background test.The final research results showed that the method of deducting the background using the minimum counts in the CE-1 GRS pixels is optimal for the elements,U,K and Th.The method applies to such a case that the elemental abundances in the pixel with the minimum counting rate are 0 μg/g and the continuum background counts are constant over the Moon.Based on the method of background deduction,the full energy peak counts of U,K,and Th are calculated.展开更多
The characteristic gamma-ray spectrum of TNT in the soil induced by DT neutrons is measured by the PFTNA demining system. The GEANT4 toolkit is used to simulate the whole experimental procedure. The simulated spectra ...The characteristic gamma-ray spectrum of TNT in the soil induced by DT neutrons is measured by the PFTNA demining system. The GEANT4 toolkit is used to simulate the whole experimental procedure. The simulated spectra are compared with the experimental spectra, and they are mainly consistent. The share of the background sources such as neutrons and gamma is obtained and the contribution that the experimental apparatus to the background, such as shielding, detector sleeve and moderator, is analyzed. The effective gamma signal(from soil and TNT) is 29% of the full spectrum signal, and the background signal, more than 68%, this is mainly produced by shielding and the detector sleeve. By gradually optimizing the shielding and the cadmium sheet of the detector sleeve, the share of the effective gamma signal increases to 47%, and the background signal reduces to 18%.展开更多
A 10 y (1999-2008) birth records from two public and most accessible maternity hospitals locally in the city of Abeokuta, Nigeria were used to investigate the possible association of high outdoor gamma radiation expos...A 10 y (1999-2008) birth records from two public and most accessible maternity hospitals locally in the city of Abeokuta, Nigeria were used to investigate the possible association of high outdoor gamma radiation exposure on reproductive abnormalities in the city. From the delivery record of 11,923 births in the period under study, a total number of 485 incidences of reproductive abnormalities were recoded. These incidences comprise 228 multiple births, 190 still births and, 67 premature births. Using the available terrestrial gamma radiation exposure data for the city and different reproductive abnormalities, regression assessment was carried out using the Pearson Product Moment (PPM) correlation statistics. The correlation showed that the incidences of reproductive abnormalities and the radiation dose levels were negatively correlated and correlation coefficient values were very low for each of the reproductive abnormalities considered. Factors such as socio-economic potentials of patients, dietary and other environmental factors may have substantial influence on the reproductive defects in the area other than radiation. However, the present study has added to the radiometric information needed in understanding the relationship between natural outdoor radiation exposure and occurrences of reproductive abnormalities in areas of high radiation in the country.展开更多
This study assesses radiation levels in soil, water and air in the Norochcholai,<span> </span><span>an area in Sri Lanka closest to the Kundankulam nuclear power plant, India which is situated in the...This study assesses radiation levels in soil, water and air in the Norochcholai,<span> </span><span>an area in Sri Lanka closest to the Kundankulam nuclear power plant, India which is situated in the North Western coast. This is important for monitoring radiation hazards </span><span><span><span style="font-family:;" "="">and</span></span></span><span><span><span style="font-family:;" "=""> will be useful in case of a nuclear accident. Superficial soil and water samples from 23 locations were analyzed by Gamma spectrometry using<span style="color:red;"> </span>HPGe detector. The activity concentrations of Th232, K40, Ra226 and Pb210 in the soil were 56.0</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq<span style="white-space:normal;">·</span>kg</span></span></span><span><span><span><span><sup><span style="font-family:;" "=""><span style="font-size:10px;">-</span>1</span></sup></span></span></span></span><span></span><span></span><span><span><span style="font-family:;" "="">, 96.0</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq</span></span></span>·<span><span><span style="font-family:;" "="">kg</span></span></span><span><span><sup><span style="font-family:;" "=""><span><span style="font-size:10px;">-</span>1</span></span></sup></span></span><span><span><span style="font-family:;" "="">, 24.0</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq<span style="white-space:normal;">·</span>kg</span></span></span><span><span><sup><span style="font-family:;" "=""><span><span style="font-size:10px;">-</span>1</span></span></sup></span></span><span><span><span style="font-family:;" "=""> and 27.0</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq<span style="white-space:normal;">·</span>kg</span></span></span><span><span><sup><span style="font-family:;" "=""><span><span style="font-size:10px;">-</span>1</span></span></sup></span></span><span><span><span style="font-family:;" "=""> respectively. Dose rate at 1</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m height w</span></span></span><span><span><span style="font-family:;" "="">as</span></span></span><span><span><span style="font-family:;" "=""> recorded using a survey meter</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(Automess 6150AD). Median dose rate was 0.098</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">μSv<span style="white-space:normal;">·</span>h</span></span></span><span><span><sup><span style="font-family:;" "=""><span><span style="font-size:10px;">-</span>1</span></span></sup></span></span><span><span><span style="font-family:;" "="">. The median gamma ray absorbed dose rate w</span></span></span><span><span><span style="font-family:;" "="">as</span></span></span><span><span><span style="font-family:;" "=""> 51.2 nGy<span style="white-space:normal;">·</span>h</span></span></span><span><span><sup><span style="font-family:;" "=""><span><span style="font-size:10px;">-</span>1</span></span></sup></span></span><span><span><span style="font-family:;" "="">,</span></span></span><span><span><span style="font-family:;" "=""> which is lower than the global average of 57 nGy<span style="white-space:normal;">·</span>h</span></span></span><span><span><sup><span style="font-family:;" "=""><span><span style="font-size:10px;">-</span>1</span></span></sup></span></span><span><span><span style="font-family:;" "="">. Radium equivalent activity</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(Raeq) ranged from 30.3</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq/Kg -</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">458.3</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq/Kg and only one sample recorded the Raeq ></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">370</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq/Kg as safe to be used in building materials. External hazardous indices of all the samples w</span></span></span><span><span><span style="font-family:;" "="">ere</span></span></span><span><span><span style="font-family:;" "=""> below 1 a</span></span></span><span><span><span style="font-family:;" "="">nd the mean annual effective dose was within the safe limit of 1</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">mSv/y. The health risk of exposure to terrestrial radiation from the soil in the area is minimal. These data could be used as baseline for radiation assessment.</span></span></span>展开更多
This paper analyses and summarizes the natural radionuclide contents of soil and building materials, radon concentrations and the penetrating radiation levels in Hong Kong. From these, a thorough and objective assessm...This paper analyses and summarizes the natural radionuclide contents of soil and building materials, radon concentrations and the penetrating radiation levels in Hong Kong. From these, a thorough and objective assessment for the terrestrial background irradiation level of Hong Kong was made. Finally, the annual effective dose equivalent received by Hong Kong people due to the natural background irradiation was calculated to be 3.2 mSv.展开更多
文摘Low background gamma spectrometry was used to measure the radionuclides activity of <sup>238</sup>U, <sup>232</sup>Th, and <sup>235</sup>U series as well as <sup>40</sup>K and <sup>137</sup>Cs in a sediment sample. The goal of the study was to measure the <sup>238</sup>U (63.3 keV peak of <sup>234</sup>Th;1001 keV peak of <sup>234m</sup>Pa) and <sup>235</sup>U (143.76 keV, 163.33 keV, and 205.31 keV peaks) activity by low background gamma spectrometry in sediment sample. <sup>235</sup>U activity in environmental samples is difficult to accurately measure by gamma spectrometry due to its low abundance in nature and low gamma line intensities at 143.76 keV, 163.33 keV, and 205.31 keV. We have shown that by using low background gamma spectrometry, it is possible to accurately measure the <sup>235</sup>U activity in sediment samples. The <sup>235</sup>U activity was measured without using the major peak of 185.7 keV (I<sub>γ</sub> = 57.2%) which requires interference correction from 186.21 keV of <sup>226</sup>Ra. <sup>226</sup>Ra activity was determined by measuring <sup>222</sup>Rn daughters (<sup>214</sup>Pb and <sup>214</sup>Bi). The precision and accuracy of the gamma activity measurement in the sediment sample were verified by using the HPGe detectors with Certified Reference Material (CRM) Irish Sea Sediment (IAEA-385). The results obtained for the 63.33 keV energy line of <sup>234</sup>Th are compared with the 1001 keV energy line of <sup>234m</sup>Pa. The values of <sup>238</sup>U and <sup>235</sup>U activities, as well as <sup>40</sup>K, <sup>137</sup>Cs, and <sup>226</sup>Ra, agreed with the certificate values of CRM. The results show that the <sup>238</sup>U is in equilibrium with its daughters (<sup>234</sup>Th, <sup>234m</sup>Pa, and <sup>210</sup>Pb). <sup>232</sup>Th is also in equilibrium with its daughters (<sup>228</sup>Ra, <sup>212</sup>Pb, <sup>212</sup>Bi and <sup>208</sup>Tl). <sup>235</sup>U/<sup>238</sup>U activity ratio of 0.046 ± 0.007 in the sediment is constant in nature but fluctuates due to geological processes. A value of 0.055 ± 0.008 was found in our sediment sample.
文摘The accelerator-generating 6.13 MeV pulsed Gamma by 19F(p, αγ)160 reaction usually synchronizes with an intense bremsstrahlung x-ray which has a maximum energy of 1 MeV. This paper proposes a new method, named the scattering and absorbing method, to diagnose the 6.13 MeV Gamma. This method includes two parts: the detector and a scatterer placed in front of the detector. The detector converts the Gamma to electrons and then collects the electrons by a scintillator. In order to restrain the interference of the low-energy background, the scintillator collects the electrons at a small angle. The scintillator is wrapped with electro-absorbing material to absorb the low-energy electrons generated by background x-rays. The theoretical sensitivity ratio of 6.13 MeV Gamma to 1 MeV x-rays is greater than 150. The scatterer is a pretreatment tool to scatter some background x-rays away from the radial beam before they enter the detector. By varying the length, the scatterer can reduce the background x-rays to an acceptable level for the detector.
基金supported by the Na-tional High Technology Research and Development Program of China (Nos. 2008AA12A212,2010AA122201 and 2010AA122202)the National Natural Science Foundation of China (Nos.41040031 and 40904024)
文摘Gamma-ray spectrometer(GRS) is used to detect the elemental abundances and distributions on the lunar surface.To derive the elemental abundances,it is vital to acquire background gamma rays except lunar gamma rays.So GRS would observe background spectra in the course of earth-moon transfer on schedule.But in fact,GRS was not switched on in the course of flying toward the moon.After the CE-1 probe finished one-year mission,GRS car-ried out a test on background data on November 21?22,2008.The authors did conduct research on the methods of background deduction using 2105 hours of usable gamma-ray spectra acquired at the 200-km orbital height by the GRS and more than 5 hours of gamma-ray spectra acquired in the GRS background test.The final research results showed that the method of deducting the background using the minimum counts in the CE-1 GRS pixels is optimal for the elements,U,K and Th.The method applies to such a case that the elemental abundances in the pixel with the minimum counting rate are 0 μg/g and the continuum background counts are constant over the Moon.Based on the method of background deduction,the full energy peak counts of U,K,and Th are calculated.
文摘The characteristic gamma-ray spectrum of TNT in the soil induced by DT neutrons is measured by the PFTNA demining system. The GEANT4 toolkit is used to simulate the whole experimental procedure. The simulated spectra are compared with the experimental spectra, and they are mainly consistent. The share of the background sources such as neutrons and gamma is obtained and the contribution that the experimental apparatus to the background, such as shielding, detector sleeve and moderator, is analyzed. The effective gamma signal(from soil and TNT) is 29% of the full spectrum signal, and the background signal, more than 68%, this is mainly produced by shielding and the detector sleeve. By gradually optimizing the shielding and the cadmium sheet of the detector sleeve, the share of the effective gamma signal increases to 47%, and the background signal reduces to 18%.
文摘A 10 y (1999-2008) birth records from two public and most accessible maternity hospitals locally in the city of Abeokuta, Nigeria were used to investigate the possible association of high outdoor gamma radiation exposure on reproductive abnormalities in the city. From the delivery record of 11,923 births in the period under study, a total number of 485 incidences of reproductive abnormalities were recoded. These incidences comprise 228 multiple births, 190 still births and, 67 premature births. Using the available terrestrial gamma radiation exposure data for the city and different reproductive abnormalities, regression assessment was carried out using the Pearson Product Moment (PPM) correlation statistics. The correlation showed that the incidences of reproductive abnormalities and the radiation dose levels were negatively correlated and correlation coefficient values were very low for each of the reproductive abnormalities considered. Factors such as socio-economic potentials of patients, dietary and other environmental factors may have substantial influence on the reproductive defects in the area other than radiation. However, the present study has added to the radiometric information needed in understanding the relationship between natural outdoor radiation exposure and occurrences of reproductive abnormalities in areas of high radiation in the country.
文摘This study assesses radiation levels in soil, water and air in the Norochcholai,<span> </span><span>an area in Sri Lanka closest to the Kundankulam nuclear power plant, India which is situated in the North Western coast. This is important for monitoring radiation hazards </span><span><span><span style="font-family:;" "="">and</span></span></span><span><span><span style="font-family:;" "=""> will be useful in case of a nuclear accident. Superficial soil and water samples from 23 locations were analyzed by Gamma spectrometry using<span style="color:red;"> </span>HPGe detector. The activity concentrations of Th232, K40, Ra226 and Pb210 in the soil were 56.0</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq<span style="white-space:normal;">·</span>kg</span></span></span><span><span><span><span><sup><span style="font-family:;" "=""><span style="font-size:10px;">-</span>1</span></sup></span></span></span></span><span></span><span></span><span><span><span style="font-family:;" "="">, 96.0</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq</span></span></span>·<span><span><span style="font-family:;" "="">kg</span></span></span><span><span><sup><span style="font-family:;" "=""><span><span style="font-size:10px;">-</span>1</span></span></sup></span></span><span><span><span style="font-family:;" "="">, 24.0</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq<span style="white-space:normal;">·</span>kg</span></span></span><span><span><sup><span style="font-family:;" "=""><span><span style="font-size:10px;">-</span>1</span></span></sup></span></span><span><span><span style="font-family:;" "=""> and 27.0</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq<span style="white-space:normal;">·</span>kg</span></span></span><span><span><sup><span style="font-family:;" "=""><span><span style="font-size:10px;">-</span>1</span></span></sup></span></span><span><span><span style="font-family:;" "=""> respectively. Dose rate at 1</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m height w</span></span></span><span><span><span style="font-family:;" "="">as</span></span></span><span><span><span style="font-family:;" "=""> recorded using a survey meter</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(Automess 6150AD). Median dose rate was 0.098</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">μSv<span style="white-space:normal;">·</span>h</span></span></span><span><span><sup><span style="font-family:;" "=""><span><span style="font-size:10px;">-</span>1</span></span></sup></span></span><span><span><span style="font-family:;" "="">. The median gamma ray absorbed dose rate w</span></span></span><span><span><span style="font-family:;" "="">as</span></span></span><span><span><span style="font-family:;" "=""> 51.2 nGy<span style="white-space:normal;">·</span>h</span></span></span><span><span><sup><span style="font-family:;" "=""><span><span style="font-size:10px;">-</span>1</span></span></sup></span></span><span><span><span style="font-family:;" "="">,</span></span></span><span><span><span style="font-family:;" "=""> which is lower than the global average of 57 nGy<span style="white-space:normal;">·</span>h</span></span></span><span><span><sup><span style="font-family:;" "=""><span><span style="font-size:10px;">-</span>1</span></span></sup></span></span><span><span><span style="font-family:;" "="">. Radium equivalent activity</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(Raeq) ranged from 30.3</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq/Kg -</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">458.3</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq/Kg and only one sample recorded the Raeq ></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">370</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">Bq/Kg as safe to be used in building materials. External hazardous indices of all the samples w</span></span></span><span><span><span style="font-family:;" "="">ere</span></span></span><span><span><span style="font-family:;" "=""> below 1 a</span></span></span><span><span><span style="font-family:;" "="">nd the mean annual effective dose was within the safe limit of 1</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">mSv/y. The health risk of exposure to terrestrial radiation from the soil in the area is minimal. These data could be used as baseline for radiation assessment.</span></span></span>
文摘This paper analyses and summarizes the natural radionuclide contents of soil and building materials, radon concentrations and the penetrating radiation levels in Hong Kong. From these, a thorough and objective assessment for the terrestrial background irradiation level of Hong Kong was made. Finally, the annual effective dose equivalent received by Hong Kong people due to the natural background irradiation was calculated to be 3.2 mSv.