针对滚动轴承的磨损这一时变随机退化过程,采用Gamma过程进行建模,开展了多组定时递进的加速寿命试验,按照标准GB T 25769—2010测量得到了对应不同试验时长轴承的游隙数据,通过极大似然法与遗传算法对该过程的尺度参数与形状参数进行...针对滚动轴承的磨损这一时变随机退化过程,采用Gamma过程进行建模,开展了多组定时递进的加速寿命试验,按照标准GB T 25769—2010测量得到了对应不同试验时长轴承的游隙数据,通过极大似然法与遗传算法对该过程的尺度参数与形状参数进行了最优估计,参数估计的结果验证了Gamma过程的非齐次性质。最后,将建立的退化过程模型与原始数据进行对比,模型拟合一致性较好。展开更多
The Gamma-Dirichlet algebra corresponds to the decomposition of the gamma process into the independent product of a gamma random variable and a Dirichlet process. This structure allows us to study the properties of th...The Gamma-Dirichlet algebra corresponds to the decomposition of the gamma process into the independent product of a gamma random variable and a Dirichlet process. This structure allows us to study the properties of the Dirichlet process through the gamma process and vice versa. In this article, we begin with a brief survey of several existing results concerning this structure. New results are then obtained for the large deviations of the jump sizes of the gamma process and the quasi-invariance of the two-parameter Poisson-Dirichlet distribution. We finish the paper with the derivation of the transition function of the Fleming-Viot process with parent independent mutation from the transition function of the measure-valued branching diffusion with immigration by exploring the Gamma-Dirichlet algebra embedded in these processes. This last result is motivated by an open R. C. Gritfiths. problem proposed by S. N. Ethier and展开更多
文摘针对滚动轴承的磨损这一时变随机退化过程,采用Gamma过程进行建模,开展了多组定时递进的加速寿命试验,按照标准GB T 25769—2010测量得到了对应不同试验时长轴承的游隙数据,通过极大似然法与遗传算法对该过程的尺度参数与形状参数进行了最优估计,参数估计的结果验证了Gamma过程的非齐次性质。最后,将建立的退化过程模型与原始数据进行对比,模型拟合一致性较好。
文摘The Gamma-Dirichlet algebra corresponds to the decomposition of the gamma process into the independent product of a gamma random variable and a Dirichlet process. This structure allows us to study the properties of the Dirichlet process through the gamma process and vice versa. In this article, we begin with a brief survey of several existing results concerning this structure. New results are then obtained for the large deviations of the jump sizes of the gamma process and the quasi-invariance of the two-parameter Poisson-Dirichlet distribution. We finish the paper with the derivation of the transition function of the Fleming-Viot process with parent independent mutation from the transition function of the measure-valued branching diffusion with immigration by exploring the Gamma-Dirichlet algebra embedded in these processes. This last result is motivated by an open R. C. Gritfiths. problem proposed by S. N. Ethier and