The Gamow-Teller transitions for pf shell nuclei with proton number less than 40 and neutron number larger than 40 were believed to be blocked, due to the full filling of the neutron orbit. However, recent experimenta...The Gamow-Teller transitions for pf shell nuclei with proton number less than 40 and neutron number larger than 40 were believed to be blocked, due to the full filling of the neutron orbit. However, recent experimental research shows that the Gamow-Teller transitions for these kinds of nuclei are not blocked. In this paper, we systematically calculate the GT transition of pf shell nuclei 76Se in different truncations, and the results are compared with experimental results. It is shown that, due to correlations, the believed blocked GT transition occurs, and the shell model calculations reproduce the experimental GT strength. In addition, the electron capture rates in a stellar environment are calculated and discussed.展开更多
Starting from the CD-Bonn potential, we have performed Gamow shell-model calculations for neutronrich oxygen isotopes, investigating excitation spectra and their resonant properties. The Gamow shell model is based on ...Starting from the CD-Bonn potential, we have performed Gamow shell-model calculations for neutronrich oxygen isotopes, investigating excitation spectra and their resonant properties. The Gamow shell model is based on the Berggren ensemble, which is capable of treating the continuum effect reasonably in weakly bound or unbound nuclei. To calculate heavier-mass oxygen isotopes, we choose ^16O as a frozen core in the Camow shell-model calculations. The first 2^+ excitation energies of the even-even O isotopes are calculated, and compared with those obtained by the conventional shell model using the empirical USDB interaction. The continuum effect is proved to play an important role in the shell evolution near the drip line. We also discuss the effect of the Berggren contour choice. We improve the approximation in the contour choice to give more precise calculations of resonance widths.展开更多
基金Supported by National Natural Science Foundation of China (11165006, 10865004, 10775123)Natural Science and Technology Foundation of Guizhou Province ([2008]2254, LKS[2010]08)+1 种基金International Scientific and Technological Cooperation Projects of Guizhou Province ([2011]7026)Doctor Funding of Guizhou Normal University
文摘The Gamow-Teller transitions for pf shell nuclei with proton number less than 40 and neutron number larger than 40 were believed to be blocked, due to the full filling of the neutron orbit. However, recent experimental research shows that the Gamow-Teller transitions for these kinds of nuclei are not blocked. In this paper, we systematically calculate the GT transition of pf shell nuclei 76Se in different truncations, and the results are compared with experimental results. It is shown that, due to correlations, the believed blocked GT transition occurs, and the shell model calculations reproduce the experimental GT strength. In addition, the electron capture rates in a stellar environment are calculated and discussed.
基金Supported by the National Key R&D Program of China(2018YFA0404401)the National Natural Science Foundation of China(11320101004,11575007)+2 种基金the China Postdoctoral Science Foundation(2018M630018)the CUSTIPEN(China U.S.Theory Institute for Physics with Exotic Nuclei)funded by the U.S.Department of Energy,Office of Science(DESC0009971)and High performance Computing Platform of Peking University
文摘Starting from the CD-Bonn potential, we have performed Gamow shell-model calculations for neutronrich oxygen isotopes, investigating excitation spectra and their resonant properties. The Gamow shell model is based on the Berggren ensemble, which is capable of treating the continuum effect reasonably in weakly bound or unbound nuclei. To calculate heavier-mass oxygen isotopes, we choose ^16O as a frozen core in the Camow shell-model calculations. The first 2^+ excitation energies of the even-even O isotopes are calculated, and compared with those obtained by the conventional shell model using the empirical USDB interaction. The continuum effect is proved to play an important role in the shell evolution near the drip line. We also discuss the effect of the Berggren contour choice. We improve the approximation in the contour choice to give more precise calculations of resonance widths.