期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Petrogenesis, oxidation state and volatile content of Dongga tonalite in the Gangdese belt, Xizang: Implication for porphyry Cu mineralization
1
作者 Liqiang Zhang Xilian Chen +3 位作者 Shaohao Zou Deru Xu Xuena Wang Hua Wang 《Acta Geochimica》 EI CAS CSCD 2024年第2期280-295,共16页
The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassi... The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassic intrusions have been identified in the belt. Apart from the quartz diorite porphyry in the large Xietongmen deposit, the Cu mineralization potential of other Jurassic intrusions in this belt remains unclear. This study presents zircon U–Pb dating and trace elements, apatite major and trace elements as well as published whole-rock geochemical and isotopic data of the Dongga tonalite in the central part of the Gangdese belt, aiming to reveal the petrogenesis, oxidation state, volatile content, and Cu mineralization potential of this intrusion. The Dongga tonalite has a zircon U–Pb age of 179.4 ± 0.9 Ma. It exhibits high whole-rock V/Sc values(8.76–14.6), relatively low apatite CeN/CeN*ratios(1.04–1.28), elevated zircon(Eu/Eu*)Nvalues(an average of 0.44), high Ce4+/Ce3+values(205–1896), and high ?FMQ values(1.3–3.7), collectively suggesting a high magmatic oxygen fugacity. The Dongga tonalite features amphibole phenocrysts, relatively high whole-rock Sr/Y ratios(20.3–58.9), and lower zircon Ti temperatures (502–740 ℃), reflecting a high magmatic water content. Estimation of magmatic sulfur content(0.002–0.024 wt%) based on apatite SO3contents indicates an enriched magma sulfur content. Combined with previous studies and the collected Sr–Nd–Hf isotopes, the Dongga tonalite is derived from juvenile lower crust related with subduction of the Neo-Tethys oceanic slab. When compared with Xietongmen orebearing porphyries, the Dongga tonalite exhibits remarkable similarities with the Xietongmen ore-bearing porphyries in terms of magma source, tectonic background, magmatic redox state, and volatile components, which indicates that the Dongga tonalite has a high porphyry Cu mineralization potential, and therefore, provides important guidance for the future mineralization exploration. 展开更多
关键词 TONALITE Zircon APATITE Mineralization potential Dongga area gangdese belt
下载PDF
DISPLACEMENT HISTORY OF THE GANGDESE THRUST, ZEDONG WINDOW, SOUTHEASTERN TIBET 被引量:17
2
作者 T. Mark Harrison 1,Yin An 1, Marty Grove 1, Oscar M. Lovera 1,F.J. Ryerson 2,Zhou Xinhua 3 2 Institute of Geophysics & Planetary Physics 《地学前缘》 EI CAS CSCD 2000年第S1期109-109,共1页
Determining the timing, magnitude, and location of deformation due to the Indo\|Asian collision is widely acknowledged as an important step in understanding how the lithosphere responds during continental collision. T... Determining the timing, magnitude, and location of deformation due to the Indo\|Asian collision is widely acknowledged as an important step in understanding how the lithosphere responds during continental collision. Thus a puzzling result of geological investigations of the Lhasa Block over the past two decades has been the apparent lack of significant Tertiary deformation there. Perhaps the most important structural feature of the Lhasa Block is the south\|directed Gangdese Thrust System, which developed along its southern edge. The thrust system, which separates the Andean\|type batholith of southern Asia from rocks of Indian affinity, is obscured at most locations across southeastern Tibet by backthrusts of the younger, north\|directed Renbu Zedong Thrust System. The best documented site where both thrusts are exposed is a structural window near Zedong. 展开更多
关键词 DISPLACEMENT geochronologic analyses the gangdese THRUST the Z edong WINDOW Southeastern TIBET
下载PDF
Late Triassic Granites From the Quxu Batholith Shedding a New Light on the Evolution of the Gangdese Belt in Southern Tibet 被引量:18
3
作者 MENG Yuanku XU Zhiqin +1 位作者 XU Yang MA Shiwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第2期462-481,共20页
The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subdu... The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3~=1.8 Ma and 229.9~1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene (47-52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features (A/CNK〈I.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive till(t) values ranging from +13.91 to +15.54 (mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma (mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic (-230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous sub- terranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet. 展开更多
关键词 Late Triassic Neo-Tethys Ocean active continental margin gangdese batholith southern Tibet
下载PDF
Origin of the Newly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau,SW China 被引量:19
4
作者 HUANG Yong LI Guangming +4 位作者 DING Jun DAI Jie YAN Guoqiang DONG Suiliang HUANG Hanxiao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第1期109-134,共26页
The newly discovered Zhunuo porphyry Cu-Mo-Au deposit is located in the western part of the Gangdese porphyry copper belt in southern Tibet, SW China. The granitoid plutons in the Zhunuo region are composed of quartz ... The newly discovered Zhunuo porphyry Cu-Mo-Au deposit is located in the western part of the Gangdese porphyry copper belt in southern Tibet, SW China. The granitoid plutons in the Zhunuo region are composed of quartz diorite porphyry, diorite porphyry, granodiorite porphyry, biotite monzogranite and quartz porphyry. The quartz diorite porphyry yielded zircon U-Pb ages of 51.9±0.7 Ma(Eocene) using LA-ICP-MS, whereas the diorite porphyry, granodiorite porphyry, biotite monzogranite and quartz porphyry yielded ages ranging from 16.2±0.2 to 14.0±0.2 Ma(Miocene). CuMo-Au mineralization is mainly hosted in the Miocene granodiorite porphyry. Samples from all granitoid plutons have geochemical compositions consistent with high-K calc-alkaline series magmatism. The samples display highly fractionated light rare-earth element(REE) distributions and heavy REE distributions with weakly negative Eu anomalies on chondrite-normalized REE patterns. The trace element distributions exhibit positive anomalies for large-ion lithophile elements(Rb, K, U, Th and Pb) and negative anomalies for high-field-strength elements(Nb and Ti) relative to primitive mantlenormalized values. The Eocene quartz diorite porphyry yielded εNd(t) values ranging from-3.6 to-5.2,(-(87)Sr/-(86)Sr)i values in the range 0.7046–0.7063 and initial radiogenic Pb isotopic compositions with ranges of 18.599–18.657 -(206)Pb/-(204)Pb, 15.642–15.673 -(207)Pb/-(204)Pb and 38.956–39.199 -(208)Pb/-(204)Pb. In contrast, the Miocene granitoid plutons yielded ε(Nd)(t) values ranging from-6.1 to-7.3 and(87Sr/86Sr)i values in the range 0.7071–0.7078 with similar Pb isotopic compositions to the Eocene quart diorite. The Sr-Nd-Pb isotopic compositions of the rocks are consistent with formation from magma containing a component of remelted ancient crust. Zircon grains from the Eocene quartz diorite have ε(Hf)(t) values ranging from-5.2 to +0.9 and two-stage Hf model ages ranging from 1.07 to 1.46 Ga, while zircon grains from the Miocene granitoid plutons have ε(Hf)(t) values from-9.9 to +4.2 and two-stage Hf model ages ranging from 1.05–1.73 Ga, indicating that the ancient crustal component likely derives from Paleo- to Mesoproterozoic basement. This source is distinct from that of most porphyry Cu-Mo-Au deposits in the eastern part of the Gangdese porphyry copper belt, which likely originated from juvenile crust. We therefore consider melting of ancient crustal basement to have contributed significantly to the formation Miocene porphyry Cu-Mo-Au deposits in the western part of the Gangdese porphyry copper belt. 展开更多
关键词 Zircon U-Pb dating Sr-Nd-Pb-Hf isotope Zhunuo porphyry Cu-Mo-Au deposit gangdese porphyry copper belt
下载PDF
Jurassic Hornblende Gabbros in Dongga,Eastern Gangdese,Tibet:Partial Melting of Mantle Wedge and Implications for Crustal Growth 被引量:7
5
作者 XU Bo HOU Zengqian +6 位作者 ZHENG Yuanchuan ZHOU Ye ZHOU Limin YANG Yu HAN Yanwei ZHEN Guo WU Changda 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期545-564,共20页
The Gangdese batholith, more than 2500 km in length, is composed mainly of JurassicMiocene igneous rocks. This batholith is one of the most important constituents of the Tibetan orogenesis and provides an ideal place ... The Gangdese batholith, more than 2500 km in length, is composed mainly of JurassicMiocene igneous rocks. This batholith is one of the most important constituents of the Tibetan orogenesis and provides an ideal place for study of Neo-Tethyan ocean geodynamic evolution and plateau uplift. Recent studies on the Gangdese Jurassic felsic magmatism highlight its juvenile source. However, important aspects concerning the genesis of the juvenile magmatism and related deep geodynamic evolution are still unclear. Here, we report detailed petrological, geochronological, geochemical, whole-rock Sr-Nd isotopic, and in situ Sr-Hf isotopic data for a recently identified hornblende gabbro in the Dongga area, southern Lhasa sub-block. This hornblende gabbro is dominated by hornblende and plagioclase, dated at Early Jurassic(ca. 180–190 Ma), and characterized by a narrow compositional range in SiO2(49.38wt%–52.27wt%), MgO(4.08wt%–7.00wt%), FeO(10.43wt%–11.77wt%), Na2O(2.58wt%–3.51wt%), and K2O(0.48wt%–1.53wt%). It has depleted isotopic signatures, with whole-rock(87Sr/86Sr)i ratios of 0.7033–0.7043, εNd(t) values of +4.90 to +6.99, in situ plagioclase(87Sr/86Sr)i ratios of 0.7034–0.7042, and zircon εHf(t) of +12.2 to +16.8. Our results integrated with published data suggest a model of Gangdese juvenile crustal growth by a subduction-related water-enriched mantle wedge. The hydrous partial melting of the lithosphere mantle was triggered by the dehydration of a Neo-Tethyan oceanic slab. This mafic magmatism emplaced in the middle-lower crust of intraoceanic arcs or active continental margins, leading to Jurassic juvenile crustal growth in southern Tibet. 展开更多
关键词 crustal growth zircon U-Pb age mantle water-enriched gangdese belt TIBET Proto-Tethys
下载PDF
Geochronology and Geochemistry of the Late Cretaceous to Paleocene Intrusions in East Gangdese,Lhasa,Tibet and Their Tectonic Significances 被引量:6
6
作者 Lü Xin WANG Zhenghua +3 位作者 LIU Yulin LIU Hongfei XU Kaifeng ZHANG Jinshu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期441-466,共26页
In this study, we determined the granite ages in the middle to east Gangdese batholith. Zircon ages from these granites are 57.6-68.7 Ma, indicating that intrusions were formed in the Late Cretaceous to early Paleocen... In this study, we determined the granite ages in the middle to east Gangdese batholith. Zircon ages from these granites are 57.6-68.7 Ma, indicating that intrusions were formed in the Late Cretaceous to early Paleocene. The large-ion lithophile elements are highly enriched, whereas some high-field-strength elements are depleted. The Sr-Nd-Pb isotopic characteristics are similar to those of the Dianzhong volcanics in the Linzhou Basin, indicating the same origin and tectonic environment. The samples show positive εHf(t) values that are slightly lower than the values for the Linzizong volcanics, the Quxu intrusion, and other intrusions in middle Gangdese. We conclude that our samples, the Linzizong volcanics, and most main-collisional intrusions are derived from the same source with different ratios of crust and mantle input. On the basis of geological, geochemical, geochronological, and isotopic information, we conclude that the Late Cretaceous to Paleogene evolution of Gangdese can be divided into three stages. First, the collision began at 70-60 Ma, the same time as rollback of the Tethys Ocean slab. Second, during 60-50 Ma, slab breakoff triggered upwelling of the asthenosphere. Third, after 50 Ma, the Tethys Ocean slab's effect disappeared and the interaction between Indian and Asian crusts began influencing magmatism in Gangdese. 展开更多
关键词 gangdese granite late Cretaceous-Paleocene zircon U-Pb age GEOCHEMISTRY Sr-Nd-Pbisotope Hf isotope
下载PDF
Land submerged to carbonate platform by conodonts: paleoenvironment reconstruction of the western Gangdese in Tibet during Triassic 被引量:5
7
作者 Zhan-sheng Ji Jian-xin Yao +5 位作者 Gui-chun Wu Qian Sun Qiu-yuan Shi Hao Li Ji-fu He Shao-wen Zhang 《China Geology》 2018年第3期450-452,共3页
The western Gangdese in Tibet during Triassic was previously considered to be a part of the Gangdese Oldland (Zhao ZZ et al.,2001;Fig.1).If the Gangdese Oldland did exist,it means no prospect of petroleum exploration ... The western Gangdese in Tibet during Triassic was previously considered to be a part of the Gangdese Oldland (Zhao ZZ et al.,2001;Fig.1).If the Gangdese Oldland did exist,it means no prospect of petroleum exploration of the Triassic strata in western Gangdese area.Fortunately,the recent biostratigraphic progresses don’t support the existence of the Gangdese Oldland.This paper aims to briefly introduce the new paleogeographic interpretation and the reason that the western Gangdese in the Triassic was marine instead of terrigenous on the basis of the recent conodont data. 展开更多
关键词 LAND SUBMERGED western gangdese carbonate platform
下载PDF
Early Eocene leucocratic sill/dike swarms in the Gangdese belt, southern Tibet: Tectonic implications for Indo-Asian collision 被引量:3
8
作者 Xu-xuan Ma Li-E Gao +2 位作者 Zhong-bao Zhao Xi-jie Chen Hai-bing Li 《China Geology》 2021年第1期56-66,共11页
The timing of the initial Indo-Asian collision is a subject of debate for a long time.Besides,the magmatic trace of the collisional process is also unclear.In the present study,the authors report Early Eocene leucocra... The timing of the initial Indo-Asian collision is a subject of debate for a long time.Besides,the magmatic trace of the collisional process is also unclear.In the present study,the authors report Early Eocene leucocratic sill/dike swarms in the northern edge of the Nymo intrusive complex of the Gangdese belt,southern Tibet.The Nymo intrusive complex was emplaced at ca.50–47 Ma and surrounded by the metamorphosed Jurassic-aged Bima Formation volcano-sedimentary sequence along its northern side.At outcrops,the leucocratic sills/dikes intruded along or truncated the deformed foliations of the host Bima Formation,which has been subject to high-temperature amphibolite-facies metamorphism at ca.50–47 Ma.Detailed cathodoluminescence image analyses reveal that the zircon grains of the leucocratic sills/dikes have core-mantle textures.The cores yield the Jurassic ages comparable to the protolith ages of the Bima Formation.In contrast,the mantles of zircon grains yield weighted mean ages of ca.49–47 Ma,representing the crystallization timing of these leucocratic sills/dikes.The coeval ages for the Nymo intrusive complex,the high-temperature metamorphism,and the leucocratic sills/dikes indicate that a close relationship exists among them.The authors tentatively suggest that these leucocratic sills/dikes were generated from partial melting of the Jurassic-aged Bima Formation volcanic rocks,triggered by the high heat from the magma chamber of the Nymo intrusive complex.This Early Eocene tectono-thermal event of coeval magmatism,metamorphism and partial melting was most likely formed during the Indo-Asian collisional setting. 展开更多
关键词 Leucocratic sill/dike swarm Early Eocene Indo-Asian collision gangdese Tibet China
下载PDF
Petrogenesis and Tectonic Implications of the Latest Cretaceous Intrusive Rocks from the Eastern Gangdese Belt,Southeast Tibet 被引量:1
9
作者 CHEN Yanfei CHEN Xuanhua +5 位作者 ZHANG Zeming SHAO Zhaogang TIAN Zuolin DONG Xin QIN Shengkai YUAN Yuelei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第3期891-903,共13页
The latest Cretaceous magmatic activity in the eastern segment of the Lhasa terrane provides important insights for tracking the magma source and geodynamic setting of the eastern Gangdese batholith,eastward of easter... The latest Cretaceous magmatic activity in the eastern segment of the Lhasa terrane provides important insights for tracking the magma source and geodynamic setting of the eastern Gangdese batholith,eastward of eastern Himalayan Syntaxis.Detailed petrological,geochemical and geochronological studies of the intrusive rocks(monzodiorites and granodiorites)of the eastern Gangdese batholith are presented with monzodiorites and granodiorites giving zircon U-Pb crystallization dates of 70-66 Ma and 71-66 Ma withεHf(t)values of−4.8 to+6.2 and−1.9 to+5.3,respectively.These rocks are metaluminous to weakly peraluminous I-type granites showing geochemically arc-related features of enrichment in LREEs and some LILEs,e.g.,Rb,Th,and U,and depletion in HREEs and some HFSEs,e.g.,Nb,Ta,and Ti.The rocks are interpreted to be derived from partial melting of mantle material and juvenile crust,respectively,which are proposed to be triggered by Neo-Tethyan slab rollback during northward subduction,with both experiencing ancient crustal contamination.The studied intrusive rocks formed in a transitional geodynamic setting caused by Neo-Tethyan oceanic flat subduction to slab rollback beneath the eastern Gangdese belt during the latest Cretaceous. 展开更多
关键词 Neo-Tethyan ocean slab rollback regional tectonics eastern gangdese batholith Tibet
下载PDF
The Eocene corundum-bearing rocks in the Gangdese arc, south Tibet:Implications for tectonic evolution of the Himalayan orogen
10
作者 Zeming Zhang Huixia Ding +6 位作者 Xin Dong Zuolin Tian Hongchen Mu Mengmei Li Shengkai Qin Zhixiang Niu Ning Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第5期1337-1354,共18页
The genesis of Liangguo corundum deposit in the southern Gangdese magmatic arc, east-central Himalaya, remains unknown. The present study shows that the corundum-bearing rocks occur as lenses with variable sizes in th... The genesis of Liangguo corundum deposit in the southern Gangdese magmatic arc, east-central Himalaya, remains unknown. The present study shows that the corundum-bearing rocks occur as lenses with variable sizes in the Eocene gabbro that intruded into marble. These corundum-bearing rocks have highly variable mineral assemblage and mode. The corundum-rich rocks are characterized by containing abundant corundum, and minor spinel, ilmenite and magnetite, whereas the corundum-poor and corundum-free rocks have variable contents of spinel, plagioclase, sillimanite, cordierite, ilmenite and magnetite. The host gabbro shows variable degrees of hydration and carbonization. The corundum grains are mostly black, and rarely blue, and have minor Fe O and TiO_2. The spinel is hercynite, with high Fe O and low Mg O contents. The corundum-bearing rocks have variable but high Al_2O_3, FeO and TiO_2, and low SiO_2 contents. Inherited magmatic and altered zircons of the corundum-bearing rocks have similar U e Pb ages(~47 Ma) to the magmatic zircons of the host gabbro, indicating corundum-bearing rock formation immediately after the gabbro intrusion. We considered that emplacement of gabbro induced the contact metamorphism of the country-rock marble and the formation of silica-poor fluid. The channeled infiltration of generated fluid in turn resulted in the hydrothermal metasomatism of the gabbro, which characterized by considerable loss of Si from the gabbro and strong residual enrichment of Al. The metasomatic alteration probably formed under Pe T conditions of ~2.2 -2.8 kbar and ~650 -700℃. We speculate that SiO_2, CaO and Na_2O were mobile, and Al_2O_3, FeO, TiO_2 and high field strength elements remained immobile during the metasomatic process of the gabbro. The Liangguo corundum deposit, together with metamorphic corundum deposits in Central and Southeast Asia, were related to the Cenozoic Himalayan orogeny, and therefore are plate tectonic indicators. 展开更多
关键词 CORUNDUM deposit gangdese magmatic ARC METASOMATISM GABBRO Himalayan OROGEN
下载PDF
Petrogenesis, geochemistry and geological significance of Paleocene Granite in South Gangdese, Tibet
11
作者 Chengzhi Li Wenguang Yang +4 位作者 Lidong Zhu Zhen Yang Limin Lin Xin Su Hongliang Zhang 《Acta Geochimica》 EI CAS CSCD 2019年第6期883-896,共14页
The Gangdese magmatic belt,located along the southern margin of the Lhasa terrane,plays a critical role in understanding the tectonic framework associated with the Indian-Asian slab collision.In this paper,a chronolog... The Gangdese magmatic belt,located along the southern margin of the Lhasa terrane,plays a critical role in understanding the tectonic framework associated with the Indian-Asian slab collision.In this paper,a chronology of zircon U-Pb and geochemical analysis of the rock of the Cuobulaguo granitic mass in the southern of the Gangdese,Tibet,revealed a series of results.The results show that the LA-ICP-MS monzonitic granite zircon U-Pb ages are 61-59 Ma,which corresponds to the same period as the magmatic arc of the southern limit of Gangdese.In terms of geochemical composition,the granite is rich inω(SiO2)70.09%to 72.64%,with a highω(Al2O3)14.40%to 15.99%,a lowω(TiO2)0.08%to 0.24%,ω(MgO)0.41%to 0.76%,ω(Fe2O)6.82%to 29.9%,ω(P2Os)0.07%to 0.12%,andω(CaO)1.06%to 1.75%.The granite mainly belongs to the high-K calc-alkaline series.The light rare earth element(LREE)content of skeletal granite is between 133.69×10^-6〜226.64×10^-6 and the heavy rare earth element(HREE)content is between 17.36×10^-6 and 32.11×10^-6.LREE/HREE is between 5.05 and 7.83.It is enriched in light rare earth elements(LREE)and large ion lithophile elements,such as Rb,K,U,etc.,depletes high field strength elements,such as P,Nb,and Ta,and has the geochemical composition of arc magmatic rocks.In addition,the aluminum saturation index(A/CNK=1.06 to 1.11)of Cuobulaguo granite,belongs toⅠ-type granite.The comprehensive analysis showed that with the beginning of the collision between the Indian-Asian continental,the subduction ocean plate was separated from the continental plate due to gravity,resulting in an increase in the asthenosphere,which made partial fusion of the lithospheric mantle.It invaded the bottom of the lower crust,which in turn induced a partial melting of the lower crust to form granite. 展开更多
关键词 PETROGENESIS Zircon U-Pb dating Cuobulaguo granite South margin of gangdese TIBET
下载PDF
Late Triassic Intraoceanic Arc Aystem within Neotethys: Evidence from Cumulate Hornblende Gabbro in Gangdese Belt, South Tibet
12
作者 MA Xuxuan YI Zhiyu XU Zhiqin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期21-,共1页
The Neotethys plays an important role in shaping the Gangdese magmatic belt,southern Tibet.However,the initial time of spreading and subduction of the Neotethys remains contentious.In this study,a suite of late Triass... The Neotethys plays an important role in shaping the Gangdese magmatic belt,southern Tibet.However,the initial time of spreading and subduction of the Neotethys remains contentious.In this study,a suite of late Triassic cumulate hornblende gabbro was identified in the southern margin of the Gangdese magmatic belt.The gabbro exhibits cumulate structure,with hornblende and plagioclase as the primary mineral phases.Isotopic data indicate a hydrous magma source derived from a depleted mantle wedge that has been modified by slab dehydration.Geochemical discriminations suggest that the gabbro was formed in an intraoceanic arc setting,with crystallization ages of ca.220-213 Ma.Hornblende,hornblendelagioclase and ilmenite thermometers reveal that the crystallization temperature of 900-750°C for the gabbro.Hornblende and hornblende-plagioclase geobarometers yield an emplacement depth at ca.14.5-19.5 km.This gabbro constitutes a line of evidence for an intraoceanic arc magmatism that is coeval with the counterparts in the southern Turkey,revealing an intraoceanic subduction system within the Neotethys from west to east in the Late Triassic and that the oceanization of the Neotethys was much earlier than previous expectation. 展开更多
关键词 Evidence from Cumulate Hornblende Gabbro in gangdese Belt Late Triassic Intraoceanic Arc Aystem within Neotethys South Tibet
下载PDF
Mantle Driven Early Eocene Magmatic Flare-up of the Gangdese Arc, Tibet: A Case Study on the Nymo Intrusive Complex
13
作者 MA Xuxuan Joseph GMEERT +4 位作者 CAO Wenrong TIAN Zuolin LIU Dongliang XIONG Fahui LI Haibing 《Acta Geologica Sinica(English Edition)》 SCIE CAS 2024年第4期878-903,共26页
Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic m... Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic magmatism and the most voluminous flare-up in this system was in early Eocene during the transition from subduction to collision. The close association of the flare-up with collision is intriguing. Our study employs zircon Lu-Hf and bulk rock Sr-Nd isotopes, along with mineral geochemistry, to track the melt sources of the Nymo intrusive complex and the role of mantle magma during the early Eocene flare-up of the Gangdese arc, Tibet. The Nymo intrusive complex is composed of gabbronorite, diorite, quartz diorite, and granodiorite which define an arc-related calc-alkaline suite. Zircon U-Pb ages reveal that the complex was emplaced between ~50–47 Ma. Zircon Hf isotopes yield εHf(t) values of 8.2–13.1, while whole-rock Sr and Nd isotopes yield εNd(t) values of 2.7–6.5 indicative of magmatism dominated by melting of a juvenile mantle source with only minor crustal assimilation(~15%–25%) as indicated by assimilation and fractional crystallization modeling. Together with published data, the early Eocene magmatic flare-up was likely triggered by slab breakoff of subducted oceanic lithosphere at depths shallower than the overriding plate. The early Eocene magmatic flare-up may have contributed to crustal thickening of the Gangdese arc. This study provides important insights into the magmatic flare-up and its significant role in the generation of large batholiths during the transition from subduction to collision. 展开更多
关键词 mantle magmatic flare-up subduction–collision transition Nymo intrusive complex gangdese Tibet
下载PDF
Genesis of the Nuri Cu-W-Mo Deposit,Tibet,China:Constraints from in situ Trace Elements and Sr Isotopic Analysis of Scheelite 被引量:1
14
作者 WANG Yiyun WU Zhishan +8 位作者 CHEN Wenqing DU Qing’an TANG Liwei SHI Hongzhao MA Guotao ZHANG Zhi LIANG Wei WU Bo MIAO Hengyi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期117-131,共15页
The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controver... The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit. 展开更多
关键词 trace elements in situ Sr isotopes tungsten mineralization gangdese metallogenic belt TIBET
下载PDF
Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes 被引量:114
15
作者 ZHU DiCheng MO XuanXue +4 位作者 WANG LiQuan ZHAO ZhiDan NIU Yaoling ZHOU ChangYong YANG YueHeng 《Science China Earth Sciences》 SCIE EI CAS 2009年第9期1223-1239,共17页
The Cretaceous granitoids in the middle and northern Gangdese, Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision. This paper ... The Cretaceous granitoids in the middle and northern Gangdese, Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision. This paper reports bulk-rock major element, trace element and Sr-Nd isotopic data, zircon U-Pb age data, and zircon Hf isotopic data on the Zayu pluton in eastern Gangdese, Tibet. These data shed new light on the petrogenesis of the pluton. Our SHRIMP zircon U-Pb age dates, along with LA-ICPMS zircon U-Pb age dates recently reported in the literature, indicate that the Zayu pluton was emplaced at about 130 Ma, coeval with Early Cretaceous magmatic rocks in other areas of eastern Gangdese (e.g., Rawu, Baxoi areas) and the Middle Gangdese. The Zayu pluton samples lack amphibole and muscovite, and are compositionally characterized by high SiO2 (69.9%―76.8%), K2O (4.4%―5.7%), and low P2O5 (0.05%―0.12%). These samples also have A/CNK values of 1.00-1.05, and are enriched in Rb, Th, U, and Pb, and depleted in Ba, Nb, Ta, Sr, P, Ti, and Eu. These geochemical features suggest that the Zayu pluton samples are metaluminous to slightly peraluminous and are of highly fractionated I-type granite. The Zayu pluton samples have high εNd(t) values (-10.9--7.6) and low initial 87Sr/86Sr ratios (0.7120- 0.7179) relative to melts derived from mature continental crust in the Gangdese (e.g., Ningzhong Early Jurassic strongly peraluminous granite). The Zayu pluton samples are heterogeneous in zircon εHf(t) values (-12.8--2.9), yielding ancient zircon Hf crustal model ages of 1.4―2.0 Ga. The data obtained in this study together with the data in the recent literature suggest that the Early Cretaceous granitoids in eastern Gangdese represent the eastward extension of the Early Cretaceous magmatism in the middle Gangdese, and that the Lhasa micro-continent block with ancient basement may extend for ~2000 km from east to west. Zircon Hf isotopic data and bulk-rock zircon saturation temperature (789-821℃) indicate that mantle-derived materials likely played a role in the generation of the Zayu pluton. We propose that the Zayu pluton was most likely generated in a setting associated with southward sub- duction of the Bangong-Nujiang ocean floor, where mantle wedge-derived magmas may have providedthe heat and material for the anatexis of ancient crust of the Lhasa micro-continent, resulted in hybrid melts (i.e., mantle-derived basaltic magmas + crust-derived felsic magmas). Such hybrid melts with subsequent fractional crystallization are responsible for the highly evolved Zayu pluton (crust thick- ening is not a prerequisite). 展开更多
关键词 zircon U-Pb dating Sr-Nd-Hf isotope HIGHLY fractionated I-TYPE granite Zayu PLUTON EASTERN gangdese TIBET
原文传递
Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet 被引量:95
16
作者 JI WeiQiang WU FuYuan +1 位作者 LIU ChuanZhou CHUNG SunLin 《Science China Earth Sciences》 SCIE EI CAS 2009年第9期1240-1261,共22页
Based on petrological and geochemical characteristics such as rock assemblage, petrogeochemistry, Sr-Nd isotope, zircon U-Pb age, and Hf isotope, we studied geochronological framework, magma types, source characters, ... Based on petrological and geochemical characteristics such as rock assemblage, petrogeochemistry, Sr-Nd isotope, zircon U-Pb age, and Hf isotope, we studied geochronological framework, magma types, source characters, and petrogenesis of different stages of magmatism of the granitic rocks from the Gangdese batholith in southern Tibet. The magmatic activities of the Gangdese batholith can be divided into three stages. The Mesozoic magmatism, induced by northern subduction of Neotethyan slab, was continuously developed, with two peak periods of Late Jurassic and Early Cretaceous. The Paleocene-Eocene magmatism was the most intensive, and resulted from a complex progress of Neotethyan oceanic slab, including subduction, rollback, and subsequent breakoff. And the Oligocene-Miocene magmatism was attributed to the convective removal of thickened lithosphere in an east-west extension setting after India-Asia collision. Isotopically, zircons from these granitic rocks are characterized by positive εHf(t) values, suggesting that the magmatic source of the Gangdese batholith might be an arc terrane, which was accreted to the southern margin of Asia during Late Paleozoic. Therefore, the chronological framework and Hf isotopic characteristics of the Gangdese batholith are distinct from the granitic rocks in adjacent areas, which can be served as a powerful tracer in studying source-to-sink relation of sediments during the uplift and erosion of Tibetan Plateau. 展开更多
关键词 Tibet gangdese BATHOLITH GRANITIC rock GEOCHRONOLOGY PETROGENESIS
原文传递
Re-Os age for molybdenite from the Gangdese porphyry copper belt on Tibetan plateau: Implication for geody- namic setting and duration of the Cu mineralization 被引量:18
17
作者 HOU Zengqian1, QU Xiaoming1, WANG Shuxian2, DU Andao2, GAO Yongfeng3 & HUANG Wei4 1. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China 2. National Center of Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China +1 位作者 3. Shijiazhuang College of Economy, Shijiazhuang 056000, China 4. Xizang Bureau of Geology and Mineral Resources, Lhasa 850000, China 《Science China Earth Sciences》 SCIE EI CAS 2004年第3期221-231,共11页
The Gangdese porphyry copper belt consists of one large and five middle-small deposits in addition to dozens of ore-bearing porphyry bodies. The belt trends 350 km long along the EW-striking Gangdese batholith, and lo... The Gangdese porphyry copper belt consists of one large and five middle-small deposits in addition to dozens of ore-bearing porphyry bodies. The belt trends 350 km long along the EW-striking Gangdese batholith, and locally occurs as a string of beads extending about 50 km within the SN-trending rifting zones (grabens) on the Tibetan plateau. Monzonitic granite- porphyry and quartz monzonitic porphyry, as dominant host rocks, are shoshonitic and potassic calc-alkaline. Available dating data indicate that the ages of the shallow-level emplacement for these porphyries vary from 10 Ma to 18 Ma, which are identical to that of associated potassic calc-alkaline volcanic rocks (10—15 Ma) and mafic dykes (13—18 Ma). The timing and duration of Cu mineralization events are constrained by Re-Os ages for molybdenites from three porphyry copper deposits in the Gangdese porphyry copper belt. Five molybdenite samples from the Nanmu deposit yielded an 187Re-187Os isochron with a highly pre-cise age of (14.76?.22) Ma; six molybdenites from the Chongjiang deposit gave an isochron age of (14.04?.16) Ma. Re-Os model ages for two molybdenite samples from Lakang抏 deposit vary from 13.5 Ma to 13.6 Ma, which are basically identical to isochron ages mentioned above. All the thirteen samples from these three deposits yielded a linear array in the isochron diagram with a higher correlation coefficient of 0.99719 and an isochron age of (14.39?.22) Ma (1s error), suggesting an coeval event of the Cu mineralization and a shared source of ore materials for the Gangdese porphyry copper belt. Compared with the longer-lived felsic magmatic-hydrothermal system, the Cu mineralization is a relatively short event with duration of about 0.5 Ma, and usu-ally occurs in the later-stage of the complicate magmatic system. The emplacement age of the Gangdese porphyries indicates that they intruded after the rapid rising of the Gangdese Mountains at 21—23 Ma, and formed in a post-collision crustal ex-tension environment. Constraint of the NS-trending rifting zones (grabens) on localization of these porphyry bodies implies that the minor east-west stretching dates back to approximately 18 Ma. Highly precise Re-Os age of the Cu mineralization event indicates that a significant east-west extension has commenced at about (14?.5) Ma ago, which is identical to that of the normal faulting in central Tibet (13.5 Ma) and southern Tibet (14 Ma). The strong extension not only provided dilatant conduits for the migration and emplacement of the porphyry magmas pooling near the base of lithosphere, but also resulted in the rapid rising of a large volume of volatile, thus in turn constraining the temporal-spatial localization of the Gangdese porphyry Cu belt. 展开更多
关键词 PORPHYRY copper deposit RE-OS age gangdese Tibetan plateau.
原文传递
Apatite fission track dating evidence on the tectonization of Gangdese block, south Qinghai-Tibetan Plateau 被引量:13
18
作者 YUAN Wanming WANG Shicheng +1 位作者 LI Shengrong YANG Zhiqiang 《Chinese Science Bulletin》 SCIE EI CAS 2002年第3期239-243,共5页
This work makes the quantitative constrain on tectonizations of the Gangdese block, south Qinghai-Tibetan Plateau. Apatite fission track (AFT) dating analyses of 15 samples collected across the Gangdese block show tha... This work makes the quantitative constrain on tectonizations of the Gangdese block, south Qinghai-Tibetan Plateau. Apatite fission track (AFT) dating analyses of 15 samples collected across the Gangdese block show that the Gangdese block went through two periods of tectonizations, during -37.2-18.5 Ma and 18.5 - 8.0 Ma in the south Gangdese block, and during -47.6-5.3 Ma and 5.3-0 Ma in the middle Gangdese block. Different upliftings did not take place in the first period and rapid uplifting occurred in the late period. Meantime, there are some differences be-tween the south and middle Gangdese block. Their uplifting rate is 180 m/Ma and 70 m/Ma respectively. The rapid up-lifting time in the middle Gangdese block lagged behind the time in the south Gangdese block. It is Chala-Jiacuo-Riduo fault zone that is similar to the Yarlung Zangbo fault zone in control of the tectonization. 展开更多
关键词 tectonization fault zone FISSION track APATITE UPLIFTING and cooling gangdese block.
原文传递
Postcrystallization thermal evolution history of Gangdese batholithic zone and its tectonic implication 被引量:10
19
作者 陈文寄 李齐 +3 位作者 郝杰 周新华 万京林 孙敏 《Science China Earth Sciences》 SCIE EI CAS 1999年第1期37-44,共8页
Using cooling curves of K-feldspars obtained by using specific <sup>40</sup>Ar/<sup>39</sup>Ar stepe heating procedure and multiple diffusion domain modeling (MDD model), together with result... Using cooling curves of K-feldspars obtained by using specific <sup>40</sup>Ar/<sup>39</sup>Ar stepe heating procedure and multiple diffusion domain modeling (MDD model), together with results of dating hornblends, biotite, and apatite, further work has been done to examine the characteristics of the postcrystallization thermal evolution history of Gangdese batholithic zone, to compare the starting times of rapid cooling events with the variation regularities of apatite fission track (FT) ages in the eastern and western parts of Gangdese batholithic zone, and to provide the evidence for mass transport and energy transfers in the lithosphere after the collision between Indian and Eurasian plates. 展开更多
关键词 TIBET gangdese batholithic ZONE THERMAL HISTORY MDD model.
原文传递
Mineral Chemistry and Crystallization Conditions of the Late Cretaceous Mamba Pluton from the Eastern Gangdese, Southern Tibetan Plateau 被引量:11
20
作者 Xiaowei Li Xuanxue Mo +1 位作者 Mark Scheltens Qi Guan 《Journal of Earth Science》 SCIE CAS CSCD 2016年第4期545-570,共26页
The Late Cretaceous Mamba granodiorite belongs to a part of the Mesozoic Gangdese continental magmatic belt. No quantitative mineralogical study has been made hitherto, and hence the depth at which it formed is poorly... The Late Cretaceous Mamba granodiorite belongs to a part of the Mesozoic Gangdese continental magmatic belt. No quantitative mineralogical study has been made hitherto, and hence the depth at which it formed is poorly constrained. Here we present mineralogical data for the Mamba pluton, including host rocks and their mafic microgranular enclaves(MMEs), to provide insights into their overall crystallization conditions and information about magma mixing. All amphiboles in the Mamba pluton are calcic, with ~B(Ca+Na)〉1.5, and Si=6.81-7.42 apfu for the host rocks and Si=6.77-7.35 apfu for the MMEs. The paramount cation substitutions in amphibole include edenite type and tschermakite type. Biotites both in the host rocks and the MMEs collectively have high Mg O(13.19 wt.%-13.03 wt.%) contents, but define a narrow range of Al apfu(atoms per formula unit) variations(2.44-2.57). The oxygen fugacity estimates are based on the biotite compositions cluster around the NNO buffer. The calculated pressure ranges from 1.2 to 2.1 kbar according to the aluminum-in-hornblende barometer. The computed pressure varies from 0.9 to 1.3 kbar based on the aluminum-in-biotite barometer which corresponds to an average depth of ca. 3.9 km. Besides, the estimates of crystallization pressures vary from 0.8 to 1.4 kbar based on the amphibole barometer proposed by Ridolfi et al.(2010), which can be equivalent to the depths ranging from 3.1 to 5.2 km. The MMEs have plagioclase oscillatory zonings and quartz aggregates, probably indicating the presence of magma mixing. Besides, core-to-rim element variations(Rb, Sr, Ba, and P) for the K-feldspar megacrysts serve as robust evidence to support magma mixing and crystal fractionation. This indicates the significance of the magma mixing that contributes to the formation of K-feldspar megacryst zonings in the Mamba pluton. 展开更多
关键词 Mamba pluton gangdese terrane MMEs K-feldspar megacrysts magma mixing P-Tconditions oxygen fugacity in-situ trace element.
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部