Gaofen-3(GF-3),a Chinese civil synthetic aperture radar(SAR)at C-band,has operated since August 2016.Remarkably,several typhoons have been captured by GF-3 around the China Seas over its last two-year mission.In this ...Gaofen-3(GF-3),a Chinese civil synthetic aperture radar(SAR)at C-band,has operated since August 2016.Remarkably,several typhoons have been captured by GF-3 around the China Seas over its last two-year mission.In this study,six images acquired in Global Observation(GLO)and Wide ScanSAR(WSC)modes at verticalvertical(VV)polarization channel are discussed.This work focuses on investigating the observation of rainfall using GF-3 SAR.These images were collocated with winds from the European Centre for Medium-Range Weather Forecasts(ECMWF),significant wave height simulated from the WAVEWATCH-III(WW3)model,sea surface currents from climate forecast system version 2(CFSv2)of the National Centers for Environmental Prediction(NCEP)and rain rate data from the Tropical Rainfall Measuring Mission(TRMM)satellite.Sea surface roughness,was compared with the normalized radar cross section(NRCS)from SAR observations,and indicated a 0.8 correlation(COR).We analyzed the dependences of the difference between model-simulated NRCS and SARmeasured NRCS on the TRMM rain rate and WW3-simulated significant wave height.It was found that the effects of rain on SAR damps the radar signal at incidence angles ranging from 15°to 30°,while it enhances the radar signal at incidence angles ranging from 30°to 45°and incidence angles smaller than 10°.This behavior is consistent with previous studies and an algorithm for rain rate retrieval is anticipated for GF-3 SAR.展开更多
The goal of this study was to investigate the performance of a spectral-transformation wave retrieval algorithm and confirm the accuracy of wave retrieval from C-band Chinese Gaofen-3(GF-3)Synthetic Aperture Radar(SAR...The goal of this study was to investigate the performance of a spectral-transformation wave retrieval algorithm and confirm the accuracy of wave retrieval from C-band Chinese Gaofen-3(GF-3)Synthetic Aperture Radar(SAR)images.More than 200 GF-3 SAR images of the coastal China Sea and the Japan Sea for dates from January to July 2020 were acquired in the Quad-Polarization Strip(QPS)mode.The images had a swath of 30 km and a spatial resolution of 8 m pixel size.They were processed to retrieve Significant Wave Height(SWH),which is simulated from a numerical wave model called Simulating WAves Nearshore(SWAN).The first-guess spectrum is essential to the accuracy of Synthetic Aperture Radar(SAR)wave spectrum retrieval.Therefore,we proposed a wave retrieval scheme combining the theocratic-based Max Planck Institute Algorithm(MPI),a Semi-Parametric Retrieval Algorithm(SPRA),and the Parameterized First-guess Spectrum Method(PFSM),in which a full wave-number spectrum and a non-empirical ocean spectrum proposed by Elfouhaily are applied.The PFSM can be driven using the wind speed without calculating the dominant wave phase speed.Wind speeds were retrieved using a Vertical-Vertical(VV)polarized geophysical model function C-SARMOD2.The proposed algorithm was implemented for all collected SAR images.A comparison of SAR-derived wind speeds with European Center for Medium-Range Weather Forecasts(ECMWF)ERA-5 data showed a 1.95 m/s Root-Mean-Squared Error(RMSE).The comparison of retrieved SWH with SWAN-simulated results demonstrated a 0.47 m RMSE,which is less than the 0.68 m RMSE of SWH when using the PFSM algorithm.展开更多
Synthetic aperture radar(SAR)is a suitable tool to obtain reliable wind retrievals with high spatial resolution.The geophysical model function(GMF),which is widely employed for wind speed retrieval from SAR data,descr...Synthetic aperture radar(SAR)is a suitable tool to obtain reliable wind retrievals with high spatial resolution.The geophysical model function(GMF),which is widely employed for wind speed retrieval from SAR data,describes the relationship between the SAR normalized radar cross-section(NRCS)at the copolarization channel(vertical-vertical and horizontal-horizontal)and a wind vector.SAR-measured NRCS at cross-polarization channels(horizontal-vertical and vertical-horizontal)correlates with wind speed.In this study,a semi-empirical algorithm is presented to retrieve wind speed from the noisy Chinese Gaofen-3(GF-3)SAR data with noise-equivalent sigma zero correction using an empirical function.GF-3 SAR can acquire data in a quad-polarization strip mode,which includes cross-polarization channels.The semi-empirical algorithm is tuned using acquisitions collocated with winds from the European Center for Medium-Range Weather Forecasts.In particular,the proposed algorithm includes the dependences of wind speed and incidence angle on cross-polarized NRCS.The accuracy of SAR-derived wind speed is around 2.10ms−1 root mean square error,which is validated against measurements from the Advanced Scatterometer onboard the Metop-A/B and the buoys from the National Data Buoy Center of the National Oceanic and Atmospheric Administration.The results obtained by the proposed algorithm considering the incidence angle in a GMF are relatively more accurate than those achieved by other algorithms.This work provides an alternative method to generate operational wind products for GF-3 SAR without relying on ancillary data for wind direction.展开更多
Gaofen-3(GF-3) is the first Chinese space-borne satellite to carry the C-band multi-polarization synthetic aperture radar(SAR). Marine applications, i.e., winds and waves retrieved from GF-3 SAR images, have been oper...Gaofen-3(GF-3) is the first Chinese space-borne satellite to carry the C-band multi-polarization synthetic aperture radar(SAR). Marine applications, i.e., winds and waves retrieved from GF-3 SAR images, have been operational since January 2017. In this study, we have collected more than 1000 quad-polarization(vertical-vertical(VV); horizontal-horizontal(HH); vertical-horizontal(VH); horizontal-vertical(HV)) GF-3 SAR images, which were acquired around the China Seas from September 2016 to September 2017. Wind streaks were visible in these images in co-polarization(VV and HH) channel. Geophysical model functions(GMFs), including the CMOD5N together with polarization ratio(PR) model and C-SARMOD, were used to retrieve winds from the collected co-polarization GF-3 SAR images. Wind directions were directly obtained from GF-3 SAR images. Then, the SAR-derived wind speeds were compared with the measurements at a 0.25? grid from the Advanced Scatterometer on board the Metop-A/B and microwave radiometer WindSAT. Based on the analysis, empirical corrections are proposed to improve the performance of the two GMFs. Results of this study show that the standard deviation of wind speed is 1.63 m s^(-1) with a 0.19 m s^(-1) bias and 1.71 m s^(-1) with a 0.26 m s^(-1) bias for VV-and HH-polarization GF-3 SAR, respectively. Our work not only systematically evaluates wind retrieval by using the two advanced GMFs and PR models but also proposes empirical corrections to improve the accuracy of wind retrievals from GF-3 SAR images around the China Seas and thus enhance the accuracy of near real-time operational SAR-derived wind products.展开更多
Chinese Gaofen-3(GF-3) is the first civilian satellite to carry C-band(5.3 GHz) synthetic aperture radar(SAR).During the period of August 2016 to December 2017, 1 523 GF-3 SAR images acquired in quad-polarizatio...Chinese Gaofen-3(GF-3) is the first civilian satellite to carry C-band(5.3 GHz) synthetic aperture radar(SAR).During the period of August 2016 to December 2017, 1 523 GF-3 SAR images acquired in quad-polarization(vertical-vertical(VV), horizontal-horizontal(HH), vertical-horizontal(VH), and horizontal-vertical(HV)) mode were recorded, mostly around China's seas. In our previous study, the root mean square error(RMSE) of significant wave height(SWH) was found to be around 0.58 m when compared with retrieval results from a few GF-3 SAR images in co-polarization(VV and HH) with moored measurements by using an empirical algorithm CSARWAVE. We collected a number of sub-scenes from these 1 523 images in the co-polarization channel,which were collocated with wind and SWH data from the European Centre for Medium-Range Weather Forecasts(ECMWF) reanalysis field at a 0.125° grid. Through the collected dataset, an improved empirical wave retrieval algorithm for GF-3 SAR in co-polarization was tuned, herein denoted as CSARWAVE2. An additional 92 GF-3 SAR images were implemented in order to validate CSARWAVE2 against SWH from altimeter Jason-2, showing an about 0.52 m RMSE of SWH for co-polarization GF-3 SAR. Therefore, we conclude that the proposed empirical algorithm has a good performance for wave retrieval from GF-3 SAR images in co-polarization.展开更多
Conventional synthetic aperture radar(SAR)interferometry(InSAR)has been successfully used to precisely measure surface deformation in the line-of-sight(LOS)direction,while multiple-aperture SAR interferometry(MAI)has ...Conventional synthetic aperture radar(SAR)interferometry(InSAR)has been successfully used to precisely measure surface deformation in the line-of-sight(LOS)direction,while multiple-aperture SAR interferometry(MAI)has provided precise surface deformation in the along-track(AT)direction.Integration of the InSAR and MAI methods enables precise measurement of the two-dimensional(2D)deformation from an interferometric pair;recently,the integration of ascending and descending pairs has allowed the observation of precise three-dimensional(3D)deformation.Precise 3D deformation measurement has been applied to better understand geological events such as earthquakes and volcanic eruptions.The surface deformation related to the 2016 Kumamoto earthquake was large and complex near the fault line;hence,precise 3D deformation retrieval had not yet been attempted.The objectives of this study were to①perform a feasibility test of precise 3D deformation retrieval in large and complex deformation areas through the integration of offset-based unwrapped and improved multiple-aperture SAR interferograms and②observe the 3D deformation field related to the 2016 Kumamoto earthquake,even near the fault lines.Two ascending pairs and one descending the Advanced Land Observing Satellite-2(ALOS-2)Phased Array-type L-band Synthetic Aperture Radar-2(PALSAR-2)pair were used for the 3D deformation retrieval.Eleven in situ Global Positioning System(GPS)measurements were used to validate the 3D deformation measurement accuracy.The achieved accuracy was approximately 2.96,3.75,and 2.86 cm in the east,north,and up directions,respectively.The results show the feasibility of precise 3D deformation measured through the integration of the improved methods,even in a case of large and complex deformation.展开更多
A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion o...A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion of the rigid target.In this system,applying the geometry invariance of the rigid target,the unknown 3D shape and motion of the radar target can be reconstructed from the 1D range data of some scatterers extracted from the high-resolution range image.Compared with the current 1D-to-3D algorithm,in the proposed algorithm,the requirement of the 1D range data is expanded to incomplete formation involving large angular motion of the target and hence,the quantity of the scatterers and the abundance of 3D motion are enriched.Furthermore,with the three selected affine coordinates fixed,the multi-solution problem of the reconstruction is solved and the technique of nonlinear optimization can be successfully utilized in the system.Two simulations are implemented which verify the higher robustness of the system and the better performance of the 3D reconstruction for the radar target with unknown relative motion.展开更多
The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-...The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.展开更多
Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, ...Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.展开更多
Based on the general geometric model of multi-baseline Synthetic Aperture Radar Tomography (TomoSAR), the three-dimensional (3-D) sampling criteria, the analytic expression of the 3-D Point Spread Function (PSF)...Based on the general geometric model of multi-baseline Synthetic Aperture Radar Tomography (TomoSAR), the three-dimensional (3-D) sampling criteria, the analytic expression of the 3-D Point Spread Function (PSF) and the 3-D resolution are derived in the 3-D wavenumber domain in this paper. Considering the relationship between the observation geometry and the size of illuminated scenario, a 3-D Range Migration Algorithm with Elevation Digital Spotlighting (RMA-EDS) is proposed. With this algorithm 3-D images of the area of interest can be directly and accurately reconstructed in the 3-D space avoiding the complex operations of 3-D geometric correction. Finally, theoretical analyses and simulation results are presented to demonstrate the shift-varying property of the 3-D PSF and the spatialvarying property of the 3-D resolution and to demonstrate the validity of the 3-D RMA-EDS.展开更多
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process...Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.展开更多
The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third...The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.展开更多
In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used...In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability.展开更多
SAR-BM3D is one of the state of the art despeckling algorithms for SAR images. However, when tackling with high resolution SAR images, it often has an unsatisfying despeckling performance in the homogeneous smooth reg...SAR-BM3D is one of the state of the art despeckling algorithms for SAR images. However, when tackling with high resolution SAR images, it often has an unsatisfying despeckling performance in the homogeneous smooth regions, together with a high time complexity. In this paper, a novel downsampled SAR-BM3D despeckling approach combined with edge compensation is proposed. The proposed algorithm consists of two steps. First, despeckle the image which is a downsampled version of original image with SAR-BM3D. Then, compensate edges in each level when upsampling. This approach not only utilizes the good ability of feature preservation, but also improves performance of smoothing homogenous regions. When it comes to high resolution SAR images, the efficiency can be raised by six to seven times, compared to original SAR-BM3D. Experiments on simulated and real SAR images show that the proposed method reaches a high level in terms of visual quality and act more efficiently.展开更多
基金The Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes under contract No.2019J00010the National Key Research and Development Program of China under contract No.2017YFA0604901+2 种基金the National Natural Science Foundation of China under contract Nos 41806005,41676014 and 41776183the Public Welfare Technical Applied Research Project of Zhejiang Province of China under contract No.LGF19D060003the Science and Technology Project of Zhoushan City under contract No.2019C21008
文摘Gaofen-3(GF-3),a Chinese civil synthetic aperture radar(SAR)at C-band,has operated since August 2016.Remarkably,several typhoons have been captured by GF-3 around the China Seas over its last two-year mission.In this study,six images acquired in Global Observation(GLO)and Wide ScanSAR(WSC)modes at verticalvertical(VV)polarization channel are discussed.This work focuses on investigating the observation of rainfall using GF-3 SAR.These images were collocated with winds from the European Centre for Medium-Range Weather Forecasts(ECMWF),significant wave height simulated from the WAVEWATCH-III(WW3)model,sea surface currents from climate forecast system version 2(CFSv2)of the National Centers for Environmental Prediction(NCEP)and rain rate data from the Tropical Rainfall Measuring Mission(TRMM)satellite.Sea surface roughness,was compared with the normalized radar cross section(NRCS)from SAR observations,and indicated a 0.8 correlation(COR).We analyzed the dependences of the difference between model-simulated NRCS and SARmeasured NRCS on the TRMM rain rate and WW3-simulated significant wave height.It was found that the effects of rain on SAR damps the radar signal at incidence angles ranging from 15°to 30°,while it enhances the radar signal at incidence angles ranging from 30°to 45°and incidence angles smaller than 10°.This behavior is consistent with previous studies and an algorithm for rain rate retrieval is anticipated for GF-3 SAR.
基金supported by the Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)[Grant No GML2019ZD0302]the National Natural Science Foundation of China[Grant Nos 41806005 and 42076238]the China Postdoctoral Science Foundation[Grant No 2020M670245].
文摘The goal of this study was to investigate the performance of a spectral-transformation wave retrieval algorithm and confirm the accuracy of wave retrieval from C-band Chinese Gaofen-3(GF-3)Synthetic Aperture Radar(SAR)images.More than 200 GF-3 SAR images of the coastal China Sea and the Japan Sea for dates from January to July 2020 were acquired in the Quad-Polarization Strip(QPS)mode.The images had a swath of 30 km and a spatial resolution of 8 m pixel size.They were processed to retrieve Significant Wave Height(SWH),which is simulated from a numerical wave model called Simulating WAves Nearshore(SWAN).The first-guess spectrum is essential to the accuracy of Synthetic Aperture Radar(SAR)wave spectrum retrieval.Therefore,we proposed a wave retrieval scheme combining the theocratic-based Max Planck Institute Algorithm(MPI),a Semi-Parametric Retrieval Algorithm(SPRA),and the Parameterized First-guess Spectrum Method(PFSM),in which a full wave-number spectrum and a non-empirical ocean spectrum proposed by Elfouhaily are applied.The PFSM can be driven using the wind speed without calculating the dominant wave phase speed.Wind speeds were retrieved using a Vertical-Vertical(VV)polarized geophysical model function C-SARMOD2.The proposed algorithm was implemented for all collected SAR images.A comparison of SAR-derived wind speeds with European Center for Medium-Range Weather Forecasts(ECMWF)ERA-5 data showed a 1.95 m/s Root-Mean-Squared Error(RMSE).The comparison of retrieved SWH with SWAN-simulated results demonstrated a 0.47 m RMSE,which is less than the 0.68 m RMSE of SWH when using the PFSM algorithm.
基金supported by the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes (No. 2019J00010)the National Key Research and Development Program of China (No. 2017YFA0604901)+3 种基金the National Natural Science Foundation of China (Nos. 41806005 and 41776183) the Public Welfare Technical Applied Research Project of Zhejiang Province of China (No. LGF19D060003) the New- Shoot Talented Man Plan Project of Zhejiang Province (No. 2018R411065) the Science and Technology Project of Zhou- shan City (No. 2019C21008)
文摘Synthetic aperture radar(SAR)is a suitable tool to obtain reliable wind retrievals with high spatial resolution.The geophysical model function(GMF),which is widely employed for wind speed retrieval from SAR data,describes the relationship between the SAR normalized radar cross-section(NRCS)at the copolarization channel(vertical-vertical and horizontal-horizontal)and a wind vector.SAR-measured NRCS at cross-polarization channels(horizontal-vertical and vertical-horizontal)correlates with wind speed.In this study,a semi-empirical algorithm is presented to retrieve wind speed from the noisy Chinese Gaofen-3(GF-3)SAR data with noise-equivalent sigma zero correction using an empirical function.GF-3 SAR can acquire data in a quad-polarization strip mode,which includes cross-polarization channels.The semi-empirical algorithm is tuned using acquisitions collocated with winds from the European Center for Medium-Range Weather Forecasts.In particular,the proposed algorithm includes the dependences of wind speed and incidence angle on cross-polarized NRCS.The accuracy of SAR-derived wind speed is around 2.10ms−1 root mean square error,which is validated against measurements from the Advanced Scatterometer onboard the Metop-A/B and the buoys from the National Data Buoy Center of the National Oceanic and Atmospheric Administration.The results obtained by the proposed algorithm considering the incidence angle in a GMF are relatively more accurate than those achieved by other algorithms.This work provides an alternative method to generate operational wind products for GF-3 SAR without relying on ancillary data for wind direction.
基金partly supported by the National Key Research and Development Program of China (Nos. 2016YFC1401605, 2016YFC1401905, and 2017YFA0604 901)the National Natural Science Foundation of China (Nos. 41806005 and 41806004)the National Social Science Foundation of China (No. 15ZDB170)
文摘Gaofen-3(GF-3) is the first Chinese space-borne satellite to carry the C-band multi-polarization synthetic aperture radar(SAR). Marine applications, i.e., winds and waves retrieved from GF-3 SAR images, have been operational since January 2017. In this study, we have collected more than 1000 quad-polarization(vertical-vertical(VV); horizontal-horizontal(HH); vertical-horizontal(VH); horizontal-vertical(HV)) GF-3 SAR images, which were acquired around the China Seas from September 2016 to September 2017. Wind streaks were visible in these images in co-polarization(VV and HH) channel. Geophysical model functions(GMFs), including the CMOD5N together with polarization ratio(PR) model and C-SARMOD, were used to retrieve winds from the collected co-polarization GF-3 SAR images. Wind directions were directly obtained from GF-3 SAR images. Then, the SAR-derived wind speeds were compared with the measurements at a 0.25? grid from the Advanced Scatterometer on board the Metop-A/B and microwave radiometer WindSAT. Based on the analysis, empirical corrections are proposed to improve the performance of the two GMFs. Results of this study show that the standard deviation of wind speed is 1.63 m s^(-1) with a 0.19 m s^(-1) bias and 1.71 m s^(-1) with a 0.26 m s^(-1) bias for VV-and HH-polarization GF-3 SAR, respectively. Our work not only systematically evaluates wind retrieval by using the two advanced GMFs and PR models but also proposes empirical corrections to improve the accuracy of wind retrievals from GF-3 SAR images around the China Seas and thus enhance the accuracy of near real-time operational SAR-derived wind products.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1401905 and2017YFA0604901the National Natural Science Foundation of China under contract Nos 41776183,41676014,41606024 and 41506033the National Social Science Foundation of China under contract No.15ZDB170
文摘Chinese Gaofen-3(GF-3) is the first civilian satellite to carry C-band(5.3 GHz) synthetic aperture radar(SAR).During the period of August 2016 to December 2017, 1 523 GF-3 SAR images acquired in quad-polarization(vertical-vertical(VV), horizontal-horizontal(HH), vertical-horizontal(VH), and horizontal-vertical(HV)) mode were recorded, mostly around China's seas. In our previous study, the root mean square error(RMSE) of significant wave height(SWH) was found to be around 0.58 m when compared with retrieval results from a few GF-3 SAR images in co-polarization(VV and HH) with moored measurements by using an empirical algorithm CSARWAVE. We collected a number of sub-scenes from these 1 523 images in the co-polarization channel,which were collocated with wind and SWH data from the European Centre for Medium-Range Weather Forecasts(ECMWF) reanalysis field at a 0.125° grid. Through the collected dataset, an improved empirical wave retrieval algorithm for GF-3 SAR in co-polarization was tuned, herein denoted as CSARWAVE2. An additional 92 GF-3 SAR images were implemented in order to validate CSARWAVE2 against SWH from altimeter Jason-2, showing an about 0.52 m RMSE of SWH for co-polarization GF-3 SAR. Therefore, we conclude that the proposed empirical algorithm has a good performance for wave retrieval from GF-3 SAR images in co-polarization.
基金This study was funded by the Korea Meteorological Administration Research and Development Program(KMI2017-9060)the National Research Foundation of Korea funded by the Korea government(NRF-2018M1A3A3A02066008)+1 种基金In addition,the ALOS-2 PALSAR-2 data used in this study are owned by the Japan Aerospace Exploration Agency(JAXA)and were provided through the JAXA’s ALOS-2 research program(RA4,PI No.1412)The GPS data were provided by the Geospatial Information Authority of Japan.
文摘Conventional synthetic aperture radar(SAR)interferometry(InSAR)has been successfully used to precisely measure surface deformation in the line-of-sight(LOS)direction,while multiple-aperture SAR interferometry(MAI)has provided precise surface deformation in the along-track(AT)direction.Integration of the InSAR and MAI methods enables precise measurement of the two-dimensional(2D)deformation from an interferometric pair;recently,the integration of ascending and descending pairs has allowed the observation of precise three-dimensional(3D)deformation.Precise 3D deformation measurement has been applied to better understand geological events such as earthquakes and volcanic eruptions.The surface deformation related to the 2016 Kumamoto earthquake was large and complex near the fault line;hence,precise 3D deformation retrieval had not yet been attempted.The objectives of this study were to①perform a feasibility test of precise 3D deformation retrieval in large and complex deformation areas through the integration of offset-based unwrapped and improved multiple-aperture SAR interferograms and②observe the 3D deformation field related to the 2016 Kumamoto earthquake,even near the fault lines.Two ascending pairs and one descending the Advanced Land Observing Satellite-2(ALOS-2)Phased Array-type L-band Synthetic Aperture Radar-2(PALSAR-2)pair were used for the 3D deformation retrieval.Eleven in situ Global Positioning System(GPS)measurements were used to validate the 3D deformation measurement accuracy.The achieved accuracy was approximately 2.96,3.75,and 2.86 cm in the east,north,and up directions,respectively.The results show the feasibility of precise 3D deformation measured through the integration of the improved methods,even in a case of large and complex deformation.
基金supported by the National Natural Science Foundation of China (60572093)the Doctoral Program of Higher Education(20050004016)the Outstanding Doctoral Science Innovation Foundation of Beijing Jiaotong University (141095522)
文摘A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion of the rigid target.In this system,applying the geometry invariance of the rigid target,the unknown 3D shape and motion of the radar target can be reconstructed from the 1D range data of some scatterers extracted from the high-resolution range image.Compared with the current 1D-to-3D algorithm,in the proposed algorithm,the requirement of the 1D range data is expanded to incomplete formation involving large angular motion of the target and hence,the quantity of the scatterers and the abundance of 3D motion are enriched.Furthermore,with the three selected affine coordinates fixed,the multi-solution problem of the reconstruction is solved and the technique of nonlinear optimization can be successfully utilized in the system.Two simulations are implemented which verify the higher robustness of the system and the better performance of the 3D reconstruction for the radar target with unknown relative motion.
基金Supported by the National Basic Research Program (973) of China (No. 2009CB72400)
文摘The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.
基金supported by the National Natural Science Foundation of China (62001436)the Natural Science Foundation of Jiangsu Province under (BK 20190143,JSGG20190823094603691)。
文摘Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.
基金Supported by the National Science Fund for Distinguished Young Scholars (Grant No. 60725103)the National Natural Science Foundation ofChina (Grant No. 60602015)+1 种基金the National Key Laboratory Foundation (Grant No. 9140C1903030603)the Knowledge Innovation Programof Chinese Academy of Sciences (Grant No. 07QNCX-1154)
文摘Based on the general geometric model of multi-baseline Synthetic Aperture Radar Tomography (TomoSAR), the three-dimensional (3-D) sampling criteria, the analytic expression of the 3-D Point Spread Function (PSF) and the 3-D resolution are derived in the 3-D wavenumber domain in this paper. Considering the relationship between the observation geometry and the size of illuminated scenario, a 3-D Range Migration Algorithm with Elevation Digital Spotlighting (RMA-EDS) is proposed. With this algorithm 3-D images of the area of interest can be directly and accurately reconstructed in the 3-D space avoiding the complex operations of 3-D geometric correction. Finally, theoretical analyses and simulation results are presented to demonstrate the shift-varying property of the 3-D PSF and the spatialvarying property of the 3-D resolution and to demonstrate the validity of the 3-D RMA-EDS.
基金Project(2017YFC1405600)supported by the National Key R&D Program of ChinaProject(18JK05032)supported by the Scientific Research Project of Education Department of Shaanxi Province,China。
文摘Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.
基金This work was supported by the General Design Department,China Academy of Space Technology(10377).
文摘The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.
文摘In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability.
文摘SAR-BM3D is one of the state of the art despeckling algorithms for SAR images. However, when tackling with high resolution SAR images, it often has an unsatisfying despeckling performance in the homogeneous smooth regions, together with a high time complexity. In this paper, a novel downsampled SAR-BM3D despeckling approach combined with edge compensation is proposed. The proposed algorithm consists of two steps. First, despeckle the image which is a downsampled version of original image with SAR-BM3D. Then, compensate edges in each level when upsampling. This approach not only utilizes the good ability of feature preservation, but also improves performance of smoothing homogenous regions. When it comes to high resolution SAR images, the efficiency can be raised by six to seven times, compared to original SAR-BM3D. Experiments on simulated and real SAR images show that the proposed method reaches a high level in terms of visual quality and act more efficiently.