To achieve better anti-vibration performance in a low frequency region and expand the range of vibration isolation,a bilateral supported bio-inspired anti-vibration(BBAV)structure composed of purely linear elements is...To achieve better anti-vibration performance in a low frequency region and expand the range of vibration isolation,a bilateral supported bio-inspired anti-vibration(BBAV)structure composed of purely linear elements is proposed,inspired by the motion form of bird legs and the nonlinear extension and compression of muscles and tendons.The kinematic relations and nonlinear dynamic model considering vertical and rotational vibrations are established.The loading capacity and equivalent stiffness are investigated with key parameters.The amplitude-frequency characteristics and force transmissibility are used to evaluate the stability and anti-vibration performance with the effects of the excitation amplitude,rod length,installation angle,and spring stiffness.The results show that the loading requirements and resonant characteristics of the BBAV structure are adjustable,and superior vibration isolation performance can be achieved readily by tuning the parameters.The X-shaped vibration structure is sensitive to the spring stiffness,which exhibits a wider vibration isolation bandwidth with smaller spring stiffness.Besides,depending on the parameters,the nonlinear behavior of the BBAV system can be interconverted between the softening type and the hardening type.The theoretical analysis in this study demonstrates the advantages and effectiveness of the vibration isolation structure.展开更多
In the harsh environment,the structural health of the anti-vibration hammer,which suffers from the coupled effects of corrosion and fatigue damage,is significantly reduced.As part of the conductor structure,the anti-v...In the harsh environment,the structural health of the anti-vibration hammer,which suffers from the coupled effects of corrosion and fatigue damage,is significantly reduced.As part of the conductor structure,the anti-vibration hammer is rigidly attached to the conductor,effectively suppressing conductor vibration.The conductor’s breeze vibration law and natural modal frequency are altered damage to the anti-vibration hammer structure.Through built a vibration experiment platform to simulate multiple faults such as anti-vibration hammer head drop off and position slippage,which to obtained the vibration acceleration signal of the conductor.The acceleration vibration signal is processed and analyzed in the time and frequency domains.The results are used to derive the breeze vibration law of the conductor under multiple faults and propose an anti-vibration hammer damage online monitoring technology.The results show that the vibration acceleration value and vibration intensity of the conductor are significantly increased after the anti-vibration hammer damage.The natural frequency increases for each order,with an absolute change ranging from 0.15 to 6.49 Hz.The anti-vibration hammer slipped due to a loose connection,the 1st natural frequency increases from 8.18 to 16.62 Hz.Therefore,in engineering applications,there can be no contact to determine the anti-vibration hammer damage situation by monitoring the modal natural frequency of the conductor.This is even a tiny damage that cannot be seen.This method will prevent the further expansion of the damage that can cause accidents.展开更多
A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the ban...A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies.展开更多
Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is a...Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is also found to influence the study of exciton ground state energy and ground state binding energy in Al_(x)Ga_(1−x)As semiconductor spherical quantum dots.The Al_(x)Ga_(1−x)As is considered to be a direct semiconductor at AI concentration below 0.45,and an indirect one at the concentration above 0.45.With regards to the former,the ground state binding energy increases and decreases with AI concentration and eigenfrequency,respectively;however,while the ground state energy increases with AI concentration,it is marginally influenced by eigenfrequency.On the other hand,considering the latter,while the ground state binding energy increases with AI concentration,it decreases with eigenfrequency;nevertheless,the ground state energy increases both with AI concentration and eigenfrequency.Hence,for the better practical performance of the semiconductors,the properties of the excitons are suggested to vary by adjusting AI concentration and eigenfrequency.展开更多
Quasi-one-dimensional(1D)antiferromagnets are known to display intriguing phenomena especially when there is a spin gap in their spin-excitation spectra.Here we demonstrate that a spin gap exists in the quasi-1D Heise...Quasi-one-dimensional(1D)antiferromagnets are known to display intriguing phenomena especially when there is a spin gap in their spin-excitation spectra.Here we demonstrate that a spin gap exists in the quasi-1D Heisenberg antiferromagnet CoTi2O5 with highly ordered Co2+/Ti4+occupation,in which the Co2+ions with S=3/2 form a 1D spin chain along the a-axis.CoTi2O5 undergoes an antiferromagnetic transition at TN~24 K and exhibits obvious anisotropic magnetic susceptibility even in the paramagnetic region.Although a gapless magnetic ground state is usually expected in a quasi-1D Heisenberg antiferromagnet with half-integer spins,by analyzing the specific heat,the thermal conductivity,and the spin-lattice relaxation rate(1/T1)as a function of temperature,we found that a spin gap is opened in the spin-excitation spectrum of CoTi2O5 around TN,manifested by the rapid decrease of magnetic specific heat to zero,the double-peak characteristic in thermal conductivity,and the exponential decay of 1/T1 below TN.Both the magnetic measurements and the first-principles calculations results indicate that there is spin-orbit coupling in CoTi2O5,which induces the magnetic anisotropy in CoTi2O5,and then opens the spin gap at low temperature.展开更多
In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set o...In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.展开更多
The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundation...The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations.展开更多
The study analysed the digital skill gap of agricultural extension personnel on the use of digital technologies for extension services delivery in South-East, Nigeria. The specific objectives were to describe the soci...The study analysed the digital skill gap of agricultural extension personnel on the use of digital technologies for extension services delivery in South-East, Nigeria. The specific objectives were to describe the socioeconomic characteristics of agricultural extension personnel in South-East Nigeria and identify the digital skill gaps among agricultural extension personnel in the area of study. Purposive sampling technique was used to select 364 Agricultural Extension personnel for the study. Data were collected through the use of structured questionnaire and were analysed using simple descriptive statistical tools such as percentages, mean score, and standard deviation. Findings indicated that most of the personnel were male (57.8%), within the age bracket of 38 - 47 years (62.9%), had B.Sc./HND as their highest educational qualification (74.7%), married (86.3%), and had a household size of 6 - 10 Persons (57.7%). It was further revealed that the majority (70.1%) were members of professional organization, earned a monthly income of N50,001.00 - N100,000.00 (65.7%), had a work experience of 11 - 15 years (51.1%), and owned a smartphone/ iPad/laptop (91.5%). Findings further indicated that they had moderate skill gap in Basic Computer skills (Mean = 4.32), and digital communication and collaboration skills (Mean = 4.26). Findings also showed that they had a high skill gap in digital technical skills (Mean = 2.46), digital data analysis skills (Mean = 2.09), digital content creation skills (Mean = 2.43), digital ethical skills (Mean = 2.79), multimedia production skills (Mean = 2.81), and video library management skills (Mean = 2.39). The study concluded that though there exists a high digital skill gap among agricultural extension personnel in South-East, Nigeria, their socioeconomic characteristics are capable of supporting the implementation of digital extension services in the area. The study recommended that the management of Agricultural Development Programs in South-East, Nigeria, should provide digital training for extension personnel to close the digital skill gap that currently exists among the personnel.展开更多
Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between...Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.展开更多
Launch safety of explosive charges has become an urgent problem to be solved by all countries in the world aslaunch situation of ammunition becomes consistentlyworse.However, the existing numericalmodels have differen...Launch safety of explosive charges has become an urgent problem to be solved by all countries in the world aslaunch situation of ammunition becomes consistentlyworse.However, the existing numericalmodels have differentdefects. This paper formulates an efficient computational model of the combustion of an explosive charge affectedby a bottom gap in the launch environment in the context of the material point method. The current temperatureis computed accurately from the heat balance equation, and different physical states of the explosive charges areconsidered through various equations of state. Microcracks in the explosive charges are described with respectto the viscoelastic statistical crackmechanics (Visco–SCRAM) model. Themethod for calculating the temperatureat the bottomof the explosive charge with respect to the bottomgap is described. Based on this combustionmodel,the temperature history of a Composition B (COMB) explosive charge in the presence of a bottom gap is obtainedduring the launch process of a 155-mm artillery. The simulation results show that the bottom gap thickness shouldbe no greater than 0.039 cm to ensure the safety of the COM B explosive charge in the launch environment. Thisconclusion is consistent with previous results and verifies the correctness of the proposed model. Ultimately, thispaper derives amathematical expression for themaximumtemperature of the COMB explosive chargewith respectto the bottomgap thickness (over the range of 0.00–0.039 cm), and establishes a quantitative evaluationmethod forthe launch safety of explosive charges.The research results provide some guidance for the assessment and detectionof explosive charge safety in complex launch environments.展开更多
基金Project supported by the National Natural Science Foundation of China(No.52275091)the Fundamental Research Funds for the Central Universities of China(No.N2103008)the Natural Science Foundation of Liaoning Province of China(No.2020-MS-125)。
文摘To achieve better anti-vibration performance in a low frequency region and expand the range of vibration isolation,a bilateral supported bio-inspired anti-vibration(BBAV)structure composed of purely linear elements is proposed,inspired by the motion form of bird legs and the nonlinear extension and compression of muscles and tendons.The kinematic relations and nonlinear dynamic model considering vertical and rotational vibrations are established.The loading capacity and equivalent stiffness are investigated with key parameters.The amplitude-frequency characteristics and force transmissibility are used to evaluate the stability and anti-vibration performance with the effects of the excitation amplitude,rod length,installation angle,and spring stiffness.The results show that the loading requirements and resonant characteristics of the BBAV structure are adjustable,and superior vibration isolation performance can be achieved readily by tuning the parameters.The X-shaped vibration structure is sensitive to the spring stiffness,which exhibits a wider vibration isolation bandwidth with smaller spring stiffness.Besides,depending on the parameters,the nonlinear behavior of the BBAV system can be interconverted between the softening type and the hardening type.The theoretical analysis in this study demonstrates the advantages and effectiveness of the vibration isolation structure.
基金supported by the National Natural Science Foundation of China(No.52007138)the Natural Science Basis Research Plan in Shaanxi Province of China(No.2022JQ-568)the Key Research and Development Program of Shaanxi Province(No.2023-YBGY-069).
文摘In the harsh environment,the structural health of the anti-vibration hammer,which suffers from the coupled effects of corrosion and fatigue damage,is significantly reduced.As part of the conductor structure,the anti-vibration hammer is rigidly attached to the conductor,effectively suppressing conductor vibration.The conductor’s breeze vibration law and natural modal frequency are altered damage to the anti-vibration hammer structure.Through built a vibration experiment platform to simulate multiple faults such as anti-vibration hammer head drop off and position slippage,which to obtained the vibration acceleration signal of the conductor.The acceleration vibration signal is processed and analyzed in the time and frequency domains.The results are used to derive the breeze vibration law of the conductor under multiple faults and propose an anti-vibration hammer damage online monitoring technology.The results show that the vibration acceleration value and vibration intensity of the conductor are significantly increased after the anti-vibration hammer damage.The natural frequency increases for each order,with an absolute change ranging from 0.15 to 6.49 Hz.The anti-vibration hammer slipped due to a loose connection,the 1st natural frequency increases from 8.18 to 16.62 Hz.Therefore,in engineering applications,there can be no contact to determine the anti-vibration hammer damage situation by monitoring the modal natural frequency of the conductor.This is even a tiny damage that cannot be seen.This method will prevent the further expansion of the damage that can cause accidents.
基金supported by the National Natural Science Foundation of China(Nos.12372019,12072222,12132010,12021002,and 11991032)the Open Projects of State Key Laboratory for Strength and Structural Integrity of China(No.ASSIKFJJ202303002)+1 种基金the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures of China(No.SKLTESKF1901)the Aeronautical Science Foundation of China(No.ASFC-201915048001)。
文摘A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies.
基金supported by the National Natural Science Foundation of China(Nos.12164032 and 11964026)the Natural Science Foundation of Inner Mongolia(No.2019MS01010)+3 种基金Scientific Research Projects in Colleges and Universities in Inner Mongolia(No.NJZZ19145)Graduate Science Innovative Research Projects(No.S20210281Z)the Natural Science Foundation of Inner Mongolia(No.2022MS01014)Doctor Research Start-up Fund of Inner Mongolia Minzu University(No.BS625).
文摘Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is also found to influence the study of exciton ground state energy and ground state binding energy in Al_(x)Ga_(1−x)As semiconductor spherical quantum dots.The Al_(x)Ga_(1−x)As is considered to be a direct semiconductor at AI concentration below 0.45,and an indirect one at the concentration above 0.45.With regards to the former,the ground state binding energy increases and decreases with AI concentration and eigenfrequency,respectively;however,while the ground state energy increases with AI concentration,it is marginally influenced by eigenfrequency.On the other hand,considering the latter,while the ground state binding energy increases with AI concentration,it decreases with eigenfrequency;nevertheless,the ground state energy increases both with AI concentration and eigenfrequency.Hence,for the better practical performance of the semiconductors,the properties of the excitons are suggested to vary by adjusting AI concentration and eigenfrequency.
基金supported by the National Natural Science Foundation of China (Grant No. 52372003)the Funds from Beijing National Laboratory for Condensed Matter Physics
文摘Quasi-one-dimensional(1D)antiferromagnets are known to display intriguing phenomena especially when there is a spin gap in their spin-excitation spectra.Here we demonstrate that a spin gap exists in the quasi-1D Heisenberg antiferromagnet CoTi2O5 with highly ordered Co2+/Ti4+occupation,in which the Co2+ions with S=3/2 form a 1D spin chain along the a-axis.CoTi2O5 undergoes an antiferromagnetic transition at TN~24 K and exhibits obvious anisotropic magnetic susceptibility even in the paramagnetic region.Although a gapless magnetic ground state is usually expected in a quasi-1D Heisenberg antiferromagnet with half-integer spins,by analyzing the specific heat,the thermal conductivity,and the spin-lattice relaxation rate(1/T1)as a function of temperature,we found that a spin gap is opened in the spin-excitation spectrum of CoTi2O5 around TN,manifested by the rapid decrease of magnetic specific heat to zero,the double-peak characteristic in thermal conductivity,and the exponential decay of 1/T1 below TN.Both the magnetic measurements and the first-principles calculations results indicate that there is spin-orbit coupling in CoTi2O5,which induces the magnetic anisotropy in CoTi2O5,and then opens the spin gap at low temperature.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890913)the Natural Science Foundation of Sichuan Province of China(Grant No.2023YFQ0111)。
文摘In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.
基金National Natural Science Foundation of China under Grant Nos.52078395 and 52178301the Open Projects Foundation of the State Key Laboratory for Health and Safety of Bridge Structures under Grant No.BHSKL19-07-GF+1 种基金the Dawn Program of Knowledge Innovation Project from the Bureau of Science and Technology of Wuhan Municipality under Grant No.2022010801020357the Science Research Foundation of Wuhan Institute of Technology under Grant No.K2021030。
文摘The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations.
文摘The study analysed the digital skill gap of agricultural extension personnel on the use of digital technologies for extension services delivery in South-East, Nigeria. The specific objectives were to describe the socioeconomic characteristics of agricultural extension personnel in South-East Nigeria and identify the digital skill gaps among agricultural extension personnel in the area of study. Purposive sampling technique was used to select 364 Agricultural Extension personnel for the study. Data were collected through the use of structured questionnaire and were analysed using simple descriptive statistical tools such as percentages, mean score, and standard deviation. Findings indicated that most of the personnel were male (57.8%), within the age bracket of 38 - 47 years (62.9%), had B.Sc./HND as their highest educational qualification (74.7%), married (86.3%), and had a household size of 6 - 10 Persons (57.7%). It was further revealed that the majority (70.1%) were members of professional organization, earned a monthly income of N50,001.00 - N100,000.00 (65.7%), had a work experience of 11 - 15 years (51.1%), and owned a smartphone/ iPad/laptop (91.5%). Findings further indicated that they had moderate skill gap in Basic Computer skills (Mean = 4.32), and digital communication and collaboration skills (Mean = 4.26). Findings also showed that they had a high skill gap in digital technical skills (Mean = 2.46), digital data analysis skills (Mean = 2.09), digital content creation skills (Mean = 2.43), digital ethical skills (Mean = 2.79), multimedia production skills (Mean = 2.81), and video library management skills (Mean = 2.39). The study concluded that though there exists a high digital skill gap among agricultural extension personnel in South-East, Nigeria, their socioeconomic characteristics are capable of supporting the implementation of digital extension services in the area. The study recommended that the management of Agricultural Development Programs in South-East, Nigeria, should provide digital training for extension personnel to close the digital skill gap that currently exists among the personnel.
基金financially supported by China National Funds for Distinguished Young Scientists(Grant No.52025112)the Key Projects of the National Natural Science Foundation of China(Grant No.52331011)。
文摘Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.
基金the Natural Science Foundation of Heilongjiang Province,China(LH2019A008).
文摘Launch safety of explosive charges has become an urgent problem to be solved by all countries in the world aslaunch situation of ammunition becomes consistentlyworse.However, the existing numericalmodels have differentdefects. This paper formulates an efficient computational model of the combustion of an explosive charge affectedby a bottom gap in the launch environment in the context of the material point method. The current temperatureis computed accurately from the heat balance equation, and different physical states of the explosive charges areconsidered through various equations of state. Microcracks in the explosive charges are described with respectto the viscoelastic statistical crackmechanics (Visco–SCRAM) model. Themethod for calculating the temperatureat the bottomof the explosive charge with respect to the bottomgap is described. Based on this combustionmodel,the temperature history of a Composition B (COMB) explosive charge in the presence of a bottom gap is obtainedduring the launch process of a 155-mm artillery. The simulation results show that the bottom gap thickness shouldbe no greater than 0.039 cm to ensure the safety of the COM B explosive charge in the launch environment. Thisconclusion is consistent with previous results and verifies the correctness of the proposed model. Ultimately, thispaper derives amathematical expression for themaximumtemperature of the COMB explosive chargewith respectto the bottomgap thickness (over the range of 0.00–0.039 cm), and establishes a quantitative evaluationmethod forthe launch safety of explosive charges.The research results provide some guidance for the assessment and detectionof explosive charge safety in complex launch environments.