期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Characterization of 17-4PH stainless steel powders produced by supersonic gas atomization 被引量:2
1
作者 Xin-ming Zhao Jun Xu +3 位作者 Xue-xin Zhu Shao-ming Zhang Wen-dong Zhao Guo-liang Yuan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第1期83-88,共6页
17-4PH stainless steel powders were prepared using a supersonic nozzle in a close-coupled gas atomization system. The characteristics of powder particles were carried out by means of a laser particle size analyzer, sc... 17-4PH stainless steel powders were prepared using a supersonic nozzle in a close-coupled gas atomization system. The characteristics of powder particles were carried out by means of a laser particle size analyzer, scanning electron microscopy (SEM), and the X-ray diffraction (XRD) technique. The results show that the mass median particle diameter is about 19.15 prn. Three main types of surface microstructures are observed in the powders: well-developed dendrite, cellular, and cellular dendrite structure. The XRD measurements show that, as the particle size decreases, the amount of fcc phase gradually decreases and that of bcc phase increases. The cooling rate is inversely related to the particle size, i.e., it decreases with an increase in particle size. 展开更多
关键词 gas atomization metal powder stainless steel metal injection molding
下载PDF
Design and evaluation of a Laval-type supersonic atomizer for low-pressure gas atomization of molten metals 被引量:5
2
作者 Chao-run Si Xian-jie Zhang +1 位作者 Jun-biao Wang Yu-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第6期627-635,共9页
A Laval-type supersonic gas atomizer was designed for low-pressure gas atomization of molten metals. The principal design ob-jectives were to produce small-particle uniform powders at lower operating pressures by impr... A Laval-type supersonic gas atomizer was designed for low-pressure gas atomization of molten metals. The principal design ob-jectives were to produce small-particle uniform powders at lower operating pressures by improving the gas inlet and outlet structures and op-timizing structural parameters. A computational fluid flow model was developed to study the flow field characteristics of the designed atom-izer. Simulation results show that the maximum gas velocity in the atomization zone can reach 440 m&#183;s-1;this value is independent of the atomization gas pressure P0 when P0〉0.7 MPa. When P0=1.1 MPa, the aspiration pressure at the tip of the delivery tube reaches a mini-mum, indicating that the atomizer can attain the best atomization efficiency at a relatively low atomization pressure. In addition, atomization experiments with pure tin at P0=1.0 MPa and with 7055Al alloy at P0=0.8 and 0.4 MPa were conducted to evaluate the atomization capa-bility of the designed atomizer. Nearly spherical powders were obtained with the mass median diameters of 28.6, 43.4, and 63.5μm, respec-tively. Compared with commonly used atomizers, the designed Laval-type atomizer has a better low-pressure gas atomization capability. 展开更多
关键词 atomizers gas atomization supersonic flow simulation metal powders
下载PDF
Process modeling gas atomization of close-coupled ring-hole nozzle for 316L stainless steel powder production 被引量:4
3
作者 汪鹏 李静 +7 位作者 刘恒三 王欣 杜博睿 甘萍 申世远 范斌 葛学元 王淼辉 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期617-629,共13页
The paper aims at modeling and simulating the atomization process of the close-coupled ring-hole nozzle in vacuum induction gas atomization(VIGA)for metallic powder production.First of all,the primary atomization of t... The paper aims at modeling and simulating the atomization process of the close-coupled ring-hole nozzle in vacuum induction gas atomization(VIGA)for metallic powder production.First of all,the primary atomization of the ring-hole nozzle is simulated by the volume of fluid(VOF)coupled large eddy simulation(LES)model.To simulate the secondary atomization process,we use the method of selecting the droplet sub-model and the VOF model.The results show that the ring-hole nozzle forms a gas recirculation zone at the bottom of the delivery tube,which is the main reason for the formation of an annular liquid film during the primary atomization.In addition,the primary atomization process of the ring-hole nozzle consists of three stages:the formation of the serrated liquid film tip,the appearance and shedding of the ligaments,and the fragmentation of ligaments.At the same time,the primary atomization mainly forms spherical droplets and long droplets,but only the long droplets can be reserved and proceed to the secondary atomization.Moreover,increasing the number of ring holes from 18 to 30,the mass median diameter(MMD,d_(50))of the primary atomized droplets decreases first and then increases,which is mainly due to the change of the thickness of the melt film.Moreover,the secondary atomization of the ring-hole nozzles is mainly in bag breakup mode and multimode breakup model,and bag breakup will result in the formation of hollow powder,which can be avoided by increasing the gas velocity. 展开更多
关键词 metallic powder hollow powder gas atomization ring-hole nozzle
下载PDF
Processing soft ferromagnetic metallic glasses:on novel cooling strategies in gas atomization,hydrogen enhancement,and consolidation 被引量:1
4
作者 N.Ciftci N.Yodoshi +2 位作者 S.Armstrong L.Madler V.Uhlenwinkel 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第24期26-36,共11页
Processing soft ferromagnetic glass-forming alloys through gas atomization and consolidation is the most effective technique to produce bulk samples.The commercial viability of these materials depends on commercial pu... Processing soft ferromagnetic glass-forming alloys through gas atomization and consolidation is the most effective technique to produce bulk samples.The commercial viability of these materials depends on commercial purity feedstock.However,crystallization in commercial purity feedstock is several orders of magnitude faster than in high purity materials.The production of amorphous powders with commercial purity requires high cooling rates,which can only be achieved by extending the common process window in conventional gas atomization.The development of novel cooling strategies during molten metal gas atomization on two model alloys({(Fe0.6Co0.4)0.75B0.2Si0.05}96Nb4 and Fe76B10Si9P5)is reported.Hydrogen inducement during liquid quenching significantly improved the glass-forming ability and soft magnetic properties of{(Fe0.6Co0.4)0.75B0.2Si0.05}96Nb4 powders.Spark plasma sintering experiments verified that amorphous rings could be produced regardless of the cooling strategies used.While the saturation magnetization was almost unaffected by consolidation,the coercivity increased slightly and permeability decreased significantly.The magnetic properties of the final bulk samples were independent of feedstock quality.The developed cooling strategies provide a great opportunity for the commercialization of soft ferromagnetic glass-forming alloys with commercial purity. 展开更多
关键词 gas atomization Amorphous powders metallic glass Cooling QUENCHING Heat transfer HYDROGEN
原文传递
气雾化微细金属粉末的生产工艺研究 被引量:15
5
作者 李清泉 欧阳通 +3 位作者 麻润海 童立荣 韩延良 林刚 《粉末冶金技术》 CSCD 北大核心 1996年第3期181-188,共8页
介绍了气雾化微细金属粉末的生产工艺。金属熔炼、雾化制粉,粉末分级及收集都是在保护气氛中进行,气体喷嘴和漏液嘴紧密耦合并用高压气体雾化。生产的金属粉末颗粒为球形,流动性好,氧含量低,细粉收得率高,可为粉末冶金及相关行业... 介绍了气雾化微细金属粉末的生产工艺。金属熔炼、雾化制粉,粉末分级及收集都是在保护气氛中进行,气体喷嘴和漏液嘴紧密耦合并用高压气体雾化。生产的金属粉末颗粒为球形,流动性好,氧含量低,细粉收得率高,可为粉末冶金及相关行业提供优质的金属粉末原料。 展开更多
关键词 气体雾化 金属粉末 中试设备
下载PDF
真空熔炼高压气体雾化制粉技术及设备 被引量:3
6
作者 李清泉 韩延良 《粉末冶金工业》 CAS 1996年第2期27-31,共5页
介绍了气体雾化粉的品种、用途及工业化生产。还介绍了真空熔炼-高压气体雾化制粉所需的设备。
关键词 气体雾化 金属 粉末 设备 真空熔炼 粉末冶金
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部