期刊文献+
共找到191篇文章
< 1 2 10 >
每页显示 20 50 100
A"One Engine with Six Gears"System Engineering Methodology for the Economic Development of Unconventional Oil and Gas in China 被引量:9
1
作者 Guoxin Li Chenggang Xian He Liu 《Engineering》 SCIE EI CAS 2022年第11期105-115,共11页
Unconventional oil and gas resources have become the most important and realistic field for increasing China’s domestic oil and gas reserves and production.At present,the production scale does not match the massive a... Unconventional oil and gas resources have become the most important and realistic field for increasing China’s domestic oil and gas reserves and production.At present,the production scale does not match the massive amount of resources and the rapid growth of proven geological reserves.The challenges of technology,cost,management,and methodology restrict large-scale and economic development.Based on successful practices,a"one engine with six gears"system engineering methodology is put forward,which includes life-cycle management,overall synergy,interdisciplinary cross-service integration,marketoriented operation,socialized support,digitalized management,and low-carbon and green development.The methodology has been proved to be effective in multiple unconventional oil and gas national demonstration areas,including the Jimusar continental shale oil demonstration area.Disruptive views are introduced-namely,that unconventional oil and gas do not necessarily yield a low return,nor do they necessarily have a low recovery factor.A determination to achieve economic benefit must be a pervasive underlying goal for managers and experts.Return and recovery factors,as primary focuses,must be adhered to during China’s development of unconventional oil and gas.The required methodology transformation includes a revolution in management systems to significantly decrease cost and increase production,resulting in technological innovation. 展开更多
关键词 Unconventional oil and gas resources System engineering Methodology transformation Life-cycle management Geoscience-to-engineering integration
下载PDF
Principle and engineering application of pressure relief gas drainage in low permeability outburst coal seam 被引量:15
2
作者 LIU lin CHENG Yuan-ping +2 位作者 WANG Hai-feng WANG Liang MA Xian-qin 《Mining Science and Technology》 EI CAS 2009年第3期342-345,351,共5页
With the increase in mining depth, the danger of coal and gas outbursts increases.In order to drain coal gas effectively and to eliminate the risk of coal and gas outbursts, we used a specific number of penetration bo... With the increase in mining depth, the danger of coal and gas outbursts increases.In order to drain coal gas effectively and to eliminate the risk of coal and gas outbursts, we used a specific number of penetration boreholes for draining of pressure relief gas.Based on the principle of overlying strata movement, deformation and pressure relief, a good effect of gas drainage was obtained.The practice in the Panyi coal mine has shown that, after mining the C11coal seam as the protective layer, the relative expansion deformation value of the protected layer C13 reached 2.63%, The permeability coefficient increased 2880 times, the gas drainage rate of the C13 coal seam increased to more than 60%, the amount of gas was reduced from 13.0 to 5.2 m3/t and the gas pressure declined from 4.4 to 0.4 MPa, which caused the danger the outbursts in the coal seams to be eliminated.The result was that we achieved a safe and highly efficient mining operation of the C13 coal seam. 展开更多
关键词 protective layer mining technology principle drainage of pressure relief gas engineering application
下载PDF
Effect of exhaust gas recirculation and intake pre-heating on performance and emission characteristics of dual fuel engines at part loads 被引量:6
3
作者 A.Paykani R.Khoshbakhti Saray +1 位作者 M.T.Shervani-Tabar A.Mohammadi-Kousha 《Journal of Central South University》 SCIE EI CAS 2012年第5期1346-1352,共7页
Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an... Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder. 展开更多
关键词 dual fuel engine exhaust gas recirculation (EGR) EMISSION performance venturi EGR system
下载PDF
A novel type of neural networks for feature engineering of geological data:Case studies of coal and gas hydrate-bearing sediments 被引量:3
4
作者 Lishuai Jiang Yang Zhao +2 位作者 Naser Golsanami Lianjun Chen Weichao Yan 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第5期1511-1531,共21页
The nature of the measured data varies among different disciplines of geosciences.In rock engineering,features of data play a leading role in determining the feasible methods of its proper manipulation.The present stu... The nature of the measured data varies among different disciplines of geosciences.In rock engineering,features of data play a leading role in determining the feasible methods of its proper manipulation.The present study focuses on resolving one of the major deficiencies of conventional neural networks(NNs)in dealing with rock engineering data.Herein,since the samples are obtained from hundreds of meters below the surface with the utmost difficulty,the number of samples is always limited.Meanwhile,the experimental analysis of these samples may result in many repetitive values and 0 s.However,conventional neural networks are incapable of making robust models in the presence of such data.On the other hand,these networks strongly depend on the initial weights and bias values for making reliable predictions.With this in mind,the current research introduces a novel kind of neural network processing framework for the geological that does not suffer from the limitations of the conventional NNs.The introduced single-data-based feature engineering network extracts all the information wrapped in every single data point without being affected by the other points.This method,being completely different from the conventional NNs,re-arranges all the basic elements of the neuron model into a new structure.Therefore,its mathematical calculations were performed from the very beginning.Moreover,the corresponding programming codes were developed in MATLAB and Python since they could not be found in any common programming software at the time being.This new kind of network was first evaluated through computer-based simulations of rock cracks in the 3 DEC environment.After the model’s reliability was confirmed,it was adopted in two case studies for estimating respectively tensile strength and shear strength of real rock samples.These samples were coal core samples from the Southern Qinshui Basin of China,and gas hydrate-bearing sediment(GHBS)samples from the Nankai Trough of Japan.The coal samples used in the experiments underwent nuclear magnetic resonance(NMR)measurements,and Scanning Electron Microscopy(SEM)imaging to investigate their original micro and macro fractures.Once done with these experiments,measurement of the rock mechanical properties,including tensile strength,was performed using a rock mechanical test system.However,the shear strength of GHBS samples was acquired through triaxial and direct shear tests.According to the obtained result,the new network structure outperformed the conventional neural networks in both cases of simulation-based and case study estimations of the tensile and shear strength.Even though the proposed approach of the current study originally aimed at resolving the issue of having a limited dataset,its unique properties would also be applied to larger datasets from other subsurface measurements. 展开更多
关键词 Tensile strength Shear strength gas Hydrate Feature engineering Rock engineering data Neuron model
下载PDF
Numerical Analysis and Verification of the Gas Jet from Aircraft Engines Impacting a Jet Blast Deflector 被引量:4
5
作者 Fu-Dong Gao De-Xin Wang +1 位作者 Hai-Dong Wang Ming-Ming Jia 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第5期127-137,共11页
The process of the gas jet from aircraft engines impacting a jet blast deflector is not only a complex fluid–solid coupling problem that is not easy to compute, but also a safety issue that seriously interferes with ... The process of the gas jet from aircraft engines impacting a jet blast deflector is not only a complex fluid–solid coupling problem that is not easy to compute, but also a safety issue that seriously interferes with flight deck envi?ronment. The computational fluid dynamics(CFD) method is used to simulate numerically the impact e ect of gas jet from aircraft engines on a jet blast deflector by using the Reynolds?averaged Navier?Stokes(RANS) equations and turbulence models. First of all, during the pre?processing of numerical computation, a sub?domains hybrid meshing scheme is adopted to reduce mesh number and improve mesh quality. Then, four di erent turbulence models includ?ing shear?stress transport(SST) k-w, standard k-w, standard k-ε and Reynolds stress model(RSM) are used to compare and verify the correctness of numerical methods for gas jet from a single aircraft engine. The predicted values are in good agreement with the experimental data, and the distribution and regularity of shock wave, velocity, pressure and temperature of a single aircraft engine are got. The results show that SST k?w turbulence model is more suitable for the numerical simulation of compressible viscous gas jet with high prediction accuracy. Finally, the impact e ect of gas jet from two aircraft engines on a jet blast deflector is analyzed based on the above numerical method, not only the flow parameters of gas jet and the interaction regularity between gas jet and the jet blast deflector are got, but also the thermal shock properties and dynamic impact characteristics of gas jet impacting the jet blast deflector are got. So the dangerous activity area of crew and equipments on the flight deck can be predicted qualitatively and quantitatively. The proposed research explores out a correct numerical method for the fluid–solid interaction during the impact process of supersonic gas jet, which provides an e ective technical support for design, thermal ablation and structural damage analysis of a new jet blast deflector. 展开更多
关键词 Aircraft engine gas jet Computational fluid dynamics Jet blast deflector Impact effect
下载PDF
Preparation and characterization of LPPS NiCoCrAlYTa coatings for gas turbine engine 被引量:4
6
作者 洪瑞江 周克崧 +2 位作者 王德政 朱晖朝 邝子奇 《中国有色金属学会会刊:英文版》 CSCD 2001年第4期567-571,共5页
NiCoCrAlYTa coatings have been deposited onto an aircraft gas turbine engine blade using a LPPS unit equipped with a computerized robot. Optimal processing conditions, including spray parameters, the trajectory of the... NiCoCrAlYTa coatings have been deposited onto an aircraft gas turbine engine blade using a LPPS unit equipped with a computerized robot. Optimal processing conditions, including spray parameters, the trajectory of the robot, and the synchronized movements between the torch and the blade, have been developed for superior coating properties. Transferred arc treatment, providing a preheating and a cleaning of the substrate surface, enhances the adherence of the coatings to the substrate. The resulting LPPS coatings show dense and uniform characteristics with ideal hardness, and good corrosion resistance to cycle oxidation. 展开更多
关键词 low pressure plasma spraying hot corrosion COATING gas turbine engine MCRALY
下载PDF
Progress and prospects of oil and gas production engineering technology in China 被引量:3
7
作者 ZHENG Xinquan SHI Junfeng +4 位作者 CAO Gang YANG Nengyu CUI Mingyue JIA Deli LIU He 《Petroleum Exploration and Development》 CSCD 2022年第3期644-659,共16页
This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas p... This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry. 展开更多
关键词 oil and gas production engineering separated-layer injection artificial lift reservoir stimulation gas well de-watering WORKOVER digital transformation low carbon economy
下载PDF
Exploring heating performance of gas engine heat pump with heat recovery 被引量:3
8
作者 董付江 刘凤国 +2 位作者 李先庭 尤学一 赵冬芳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1931-1936,共6页
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1... In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature. 展开更多
关键词 gas engine heat pump coefficient of performance primary energy ratio heating mode heat recovery
下载PDF
Effects of different combustion modes on the thermal efficiency and emissions of a diesel pilot-ignited natural gas engine under low-medium loads 被引量:1
9
作者 JIN Shou-ying LI Jin-ze +2 位作者 ZI Zhen-yuan LIU Ya-long WU Bin-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2213-2224,共12页
Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as ... Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as DF engines.However,different combustion modes exist due to variations in the formation of the mixture.This research used a simulation model and numerical simulations to explore the combustion characteristics of high-pressure direct injection(HPDI),partially premixed compression ignition(PPCI),and double pilot injection premixed compression ignition(DPPCI)combustion modes under a low-medium load.The results revealed that the DPPCI combustion mode provides higher gross indicated thermal efficiency and more acceptable total hydrocarbon(THC)emission levels than the other modes.Due to its relatively good performance,an experimental study was conducted on the DPPCI mode engine to evaluate the impact of the diesel dual-injection strategy on the combustion process.In the DPPCI mode,a delay in the second pilot ignition injection time increased THC emissions(a maximum value of 4.27g/(kW·h)),decreased the emission of nitrogen oxides(a maximum value of 7.64 g/(kW·h)),increased and then subsequently decreased the gross indicated thermal efficiency values,which reached 50.4%under low-medium loads. 展开更多
关键词 diesel pilot-ignited natural gas engine direct injection of natural gas combustion mode thermal efficiency EMISSIONS
下载PDF
Research on the Control Strategy of Variable Nozzle Turbocharger for Natural Gas Engine 被引量:2
10
作者 郝利君 黄英 +1 位作者 张付军 葛蕴珊 《Journal of Beijing Institute of Technology》 EI CAS 2010年第1期37-41,共5页
A variable nozzle turbocharger (VNT) was applied to a 2.2-liter L4 natural gas engine,and a VNT control system was designed to operate it.Based on VNT matching test results,a VNT control strategy was studied,in whic... A variable nozzle turbocharger (VNT) was applied to a 2.2-liter L4 natural gas engine,and a VNT control system was designed to operate it.Based on VNT matching test results,a VNT control strategy was studied,in which VNT adjustment is carried out through pre-calibrated VNT handling rod position,combined with a closed-loop target boost pressure feedback using proportional-integral-derivative(PID) algorithm.Experimental results showed that the VNT control system presented in this thesis can lead to optimized performance of VNT,increase engine volumetric efficiency over a wide speed range,improve engine dynamic characteristics and upgrade economic performance. 展开更多
关键词 natural gas engine variable nozzle turbocharger (VNT) proportional-integral-derivative(PID) control control strategy experimental study
下载PDF
Performance evaluation of a diesel engine by using producer gas from some under-utilized biomass on dual-fuel mode of diesel cum producer gas 被引量:1
11
作者 D.K.Das S.P.Dash M.K.Ghosal 《Journal of Central South University》 SCIE EI CAS 2012年第6期1583-1589,共7页
Producer gas through gasification of biomass can be used as an alternate fuel in rural areas due to high potential of biomass resources in India.Experiments were conducted to study the performance of a diesel engine(f... Producer gas through gasification of biomass can be used as an alternate fuel in rural areas due to high potential of biomass resources in India.Experiments were conducted to study the performance of a diesel engine(four stroke,single cylinder,5.25 kW) with respect to its thermal efficiency,specific fuel consumption and diesel substitution by use of diesel alone and producer gas-cum-diesel(dual fuel mode).Three types of biomass,i.e.wood chips,pigeon pea stalks and corn cobs were used for generation of producer gas.A producer gas system consisting of a downdraft gasifier,a cooling cum cleaning unit,a filtering unit and a gas air mixing device was designed,fabricated and used to power a 5.25 kW diesel engine on dual fuel mode.Performance of the engine was reported by keeping biomass moisture contents as 8%,12%,16%,and 21%,engine speed as 1 600 r/min and with variable engine loads.The average value of thermal efficiency on dual fuel mode was found slightly lower than that of diesel mode.The specific diesel consumption was found to be 60%-64% less in dual fuel mode than that in diesel mode for the same amount of energy output.The average diesel substitution of 74% was observed with wood chips followed by corn cobs(78%) and pigeon pea stalks(82%).Based on the performance studied,the producer gas may be used as a substitute or as supplementary fuel for diesel conservation,particularly for stationary engines in agricultural operations in the farm. 展开更多
关键词 biomass gasification producer gas downdraft gasifier diesel engine
下载PDF
Design and optimization of exhaust gas aftertreatment system for a heavy-duty diesel engine 被引量:1
12
作者 TAN Pi-qiang YAO Chao-jie +3 位作者 WANG De-yuan ZHU Lei HU Zhi-yuan LOU Di-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2127-2141,共15页
Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reductio... Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reduction(SCR).However,before the final integration of the aftertreatment system(DOC+DPF+SCR)and the diesel engine,a reasonable structural optimization of the catalytic converters and a large number of bench calibration tests must be completed,involving large costs and long development cycles.The design and optimization of the exhaust gas aftertreatment system for a heavy-duty diesel engine was proposed in this paper.Firstly,one-dimensional(1D)and threedimensional(3D)computational models of the exhaust gas aftertreatment system accounting for the structural parameters of the catalytic converters were established.Then based on the calibrated models,the effects of the converter’s structural parameters on their main performance indicators,including the conversion of various exhaust pollutants and the temperatures and pressure drops of the converters,were studied.Finally,the optimal design scheme was obtained.The temperature distribution of the solid substrates and pressure distributions of the catalytic converters were studied based on the 3D model.The method proposed in this paper has guiding significance for the optimization of diesel engine aftertreatment systems. 展开更多
关键词 diesel engine EMISSION exhaust gas aftertreatment computational model optimal design
下载PDF
Fault Tree Analysis of Fire and Explosion Accidents for Dual Fuel (Diesel/Natural Gas) Ship Engine Rooms 被引量:1
13
作者 Yifeng Guan Jie Zhao +1 位作者 Tengfei Shi Peipei Zhu 《Journal of Marine Science and Application》 CSCD 2016年第3期331-335,共5页
In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel(diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose ... In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel(diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis.The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events.According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships. 展开更多
关键词 dual fuel ship engine room fault tree fire and explosion safety measures gas leak
下载PDF
Novel Oxygen Storage Components Promoted Palladium Catalysts for Emission Control in Natural Gas Powered Engines 被引量:1
14
作者 BinZHAO MaoChuGONG +1 位作者 XueSongFENG YongYueLUO 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第1期97-99,共3页
A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted ... A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted in improved activities of the fresh and aged catalyst by lowering the light-off temperature for methane in natural gas engines exhaust. 展开更多
关键词 Oxygen storage component (OSC) emission control for natural gas powered engines palladium catalysts light-off temperature.
下载PDF
Achievements and future work of oil and gas production engineering of CNPC 被引量:1
15
作者 LEI Qun WENG Dingwei +4 位作者 LUO Jianhui ZHANG Jianjun LI Yiliang WANG Xin GUAN Baoshan 《Petroleum Exploration and Development》 2019年第1期145-152,共8页
This paper summarizes the latest achievements and technological progress in oil and gas production engineering of China National Petroleum Corporation(CNPC) and discusses the main four challenges faced: developing low... This paper summarizes the latest achievements and technological progress in oil and gas production engineering of China National Petroleum Corporation(CNPC) and discusses the main four challenges faced: developing low quality resource at low oil price; keeping stable production of mature oilfields when well oil production drops year by year; low systematic efficiency, high cost, prominent environmental protection issue and short of technological strategy for high water cut ratio and high oil recovery ratio oilfields; and lacking of high level horizontal well drilling and completion technology to develop unconventional and deep reservoirs. Three technological development directions to address these challenges are put forward: developing fracture controlling stimulation and well factory to produce low quality resource economically, developing re-fracturing technology for old wells in mature oilfields, promoting the fourth generation separate layer water injection technology to stabilize the production of mature oilfields; innovating new technologies of water flooding with nano-material, injecting and producing through one well. 展开更多
关键词 China OIL and gas PRODUCTION OIL and gas PRODUCTION engineering TECHNOLOGICAL achievement TECHNOLOGICAL challenge FUTURE direction advanced technology
下载PDF
Least Squares Support Vector Machine Based Real-Time Fault Diagnosis Model for Gas Path Parameters of Aero Engines 被引量:1
16
作者 王旭辉 黄圣国 +2 位作者 王烨 刘永建 舒平 《Journal of Southwest Jiaotong University(English Edition)》 2009年第1期22-26,共5页
Least squares support vector machine (LS-SVM) is applied in gas path fault diagnosis for aero engines. Firstly, the deviation data of engine cruise are analyzed. Then, model selection is conducted using pattern sear... Least squares support vector machine (LS-SVM) is applied in gas path fault diagnosis for aero engines. Firstly, the deviation data of engine cruise are analyzed. Then, model selection is conducted using pattern search method. Finally, by decoding aircraft communication addressing and reporting system (ACARS) report, a real-time cruise data set is acquired, and the diagnosis model is adopted to process data. In contrast to the radial basis function (RBF) neutral network, LS-SVM is more suitable for real-time diagnosis of gas turbine engine. 展开更多
关键词 engine diagnosis gas path Least squares support vector machine Pattern search
下载PDF
Fault Identification and Health Monitoring of Gas Turbine Engines Using Hybrid Machine Learning-based Strategies 被引量:1
17
作者 Yan-yan Shen Khashayar Khorasani 《风机技术》 2022年第1期71-80,共10页
Ahealth monitoring scheme is developed in this work by using hybrid machine learning strategies to iden-tify the fault severity and assess the health status of the aircraft gas turbine engine that is subject to compon... Ahealth monitoring scheme is developed in this work by using hybrid machine learning strategies to iden-tify the fault severity and assess the health status of the aircraft gas turbine engine that is subject to component degrada-tions that are caused by fouling and erosion.The proposed hybrid framework involves integrating both supervised recur-rent neural networks and unsupervised self-organizing maps methodologies,where the former is developed to extract ef-fective features that can be associated with the engine health condition and the latter is constructed for fault severity modeling and tracking of each considered degradation mode.Advantages of our proposed methodology are that it ac-complishes fault identification and health monitoring objectives by only discovering inherent health information that are available in the system I/O data at each operating point.The effectiveness of our approach is validated and justified with engine data under various degradation modes in compressors and turbines. 展开更多
关键词 gas Turbine engines Health Monitoring Fault Identification Self-organizing Maps Machine Learn-ing Recurrent Neural Networks
下载PDF
Defect engineering on SnO_(2) nanomaterials for enhanced gas sensing performances 被引量:3
18
作者 Ya Xiong Yueqiang Lin +2 位作者 Xinzhen Wang Yi Zhao Jian Tian 《Advanced Powder Materials》 2022年第3期110-124,共15页
Although defect engineering opens up new opportunities in the field of gas sensors,the introduction of defects to enhance the gas sensing properties of metal oxide semiconductors(MOSs)has long been neglected.In this r... Although defect engineering opens up new opportunities in the field of gas sensors,the introduction of defects to enhance the gas sensing properties of metal oxide semiconductors(MOSs)has long been neglected.In this review,defect engineering strategies have been systematically introduced,with a focus on employing them for improved gas sensing performances.To keep the subject focused,we take SnO_(2) nanomaterials as an example.Various synthesis methods for defective SnO_(2),including ion/electron/ray/laser-beam irradiation,plasma treatment,heating protocol,chemical reduction,tailoring specially exposed crystal facets and atoms doping,are emphasized.Different roles of defects on the gas sensing process of SnO_(2) are discussed.Finally,critical issues and future directions of defect engineering are presented.This paper provides a platform for better understanding the relationships between synthesis,defect types and gas sensing performances of MOSs.It is also expected to unpack an important research direction for controlled synthesis of defective nanomaterials with other applications,including advanced energy conversion and storage. 展开更多
关键词 Defect engineering Defect types Defect design principles gas sensor SnO_(2)nanostructure
下载PDF
Mathematical modeling and analysis of gas torque in twin-rotor piston engine
19
作者 邓豪 潘存云 +1 位作者 徐小军 张湘 《Journal of Central South University》 SCIE EI CAS 2013年第12期3536-3544,共9页
The gas torque in a twin-rotor piston engine(TRPE) was modeled using adiabatic approximation with instantaneous combustion. The first prototype of TRPE was manufactured. This prototype is intended for high power densi... The gas torque in a twin-rotor piston engine(TRPE) was modeled using adiabatic approximation with instantaneous combustion. The first prototype of TRPE was manufactured. This prototype is intended for high power density engines and can produce 36 power strokes per shaft revolution. Compared with the conventional engines, the vector sum of combustion gas forces acting on each rotor piston in TRPE is a pure torque, and the combustion gas rotates the rotors while compresses the gas in the compression chamber at the same time. Mathematical modeling of gas force transmission was built. Expression for gas torque on each rotor was derived. Different variation patterns of the volume change of working chamber were introduced. The analytical and numerical results is presented to demonstrate the main characteristics of gas torque. The results show that the value of gas torque in TRPE falls to be less than zero before the combustion phase is finished; the time for one stroke is 30° in terms of the rotating angle of the output shaft; gas torque in one complete revolution of the output shaft has a period which is equal to 60° and it is necessary to put off the moment when gas torque becomes zero in order to export the maximum energy. 展开更多
关键词 ROTOR piston engine gas torque power density adiabatic process
下载PDF
A DEMATEL Approach Based on Fuzzy Sets for Evaluating Critical Factors of Gas Turbine in Marine Engineering
20
作者 Hakan Demirel 《Journal of Marine Science and Application》 CSCD 2020年第3期485-493,共9页
In power production,gas turbines are commonly used components that generate high amount of energy depending on size and weight.They function as integral parts of helicopters,aircrafts,trains,ships,electrical generator... In power production,gas turbines are commonly used components that generate high amount of energy depending on size and weight.They function as integral parts of helicopters,aircrafts,trains,ships,electrical generators,and tanks.Notably,many researchers are focusing on the design,operation,and maintenance of gas turbines.The focal point of this paper is a DEMATEL approach based on fuzzy sets,with the attempt to use these fuzzy sets explicitly.Using this approach,the cause–effect diagram of gas turbine failures expressed in the literature is generated and aimed to create a perspective for operators.The results of the study show that,"connecting shaft has been broken between turbine and gear box"selected the most important cause factor and"sufficient pressure fuel does not come for fuel pump"is selected the most important effect factor,according to the experts. 展开更多
关键词 DEMATEL method Fuzzy sets Marine engineering gas turbine FAILURE
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部