期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation
1
作者 Jikai Dong Bing Wang +3 位作者 Xinjie Wang Chenxi Cao Shikuan Chen Wenli Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期169-179,共11页
Nowadays, chemical safety has attracted considerable attention, and chemical gas leakage monitoring and source term estimation(STE) have become hot spots. However, few studies have focused on sensor layouts in scenari... Nowadays, chemical safety has attracted considerable attention, and chemical gas leakage monitoring and source term estimation(STE) have become hot spots. However, few studies have focused on sensor layouts in scenarios with multiple potential leakage sources and wind conditions, and studies on the risk information(RI) detection and prioritization order of sensors have not been performed. In this work, the monitoring area of a chemical factory is divided into multiple rectangles with a uniform mesh. The RI value of each grid node is calculated on the basis of the occurrence probability and normalized concentrations of each leakage scenario. A high RI value indicates that a sensor at a grid node has a high chance of detecting gas concentrations in different leakage scenarios. This situation is beneficial for leakage monitoring and STE. The methods of similarity redundancy detection and the maximization of sensor RI detection are applied to determine the sequence of sensor locations. This study reveals that the RI detection of the optimal sensor layout with eight sensors exceeds that of the typical layout with 12 sensors. In addition, STE with the optimized placement sequence of the sensor layout is numerically simulated. The statistical results of each scenario with various numbers of sensors reveal that STE is affected by sensor number and scenarios(leakage locations and winds). In most scenarios, appropriate STE results can be retained under the optimal sensor layout even with four sensors. Eight or more sensors are advised to improve the performance of STE in all scenarios. Moreover, the reliability of the STE results in each scenario can be known in advance with a specific number of sensors. Such information thus provides a reference for emergency rescue. 展开更多
关键词 gas leakage Source term estimation Sensor layout Risk information Numerical simulation OPTIMIZATION
下载PDF
Gas leakage recognition for CO2 geological sequestration based on the time series neural network 被引量:1
2
作者 Denglong Ma Jianmin Gao +3 位作者 Zhiyong Gao Hongquan Jiang Zaoxiao Zhang Juntai Xie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第9期2343-2357,共15页
The leakage of stored and transported CO2 is a risk for geological sequestration technology. One of the most challenging problems is to recognize and determine CO2 leakage signal in the complex atmosphere background. ... The leakage of stored and transported CO2 is a risk for geological sequestration technology. One of the most challenging problems is to recognize and determine CO2 leakage signal in the complex atmosphere background. In this work, a time series model was proposed to forecast the atmospheric CO2 variation and the approximation error of the model was utilized to recognize the leakage. First, the fitting neural network trained with recently past CO2 data was applied to predict the daily atmospheric CO2. Further, the recurrent nonlinear autoregressive with exogenous input(NARX) model was adopted to get more accurate prediction. Compared with fitting neural network, the approximation errors of NARX have a clearer baseline, and the abnormal leakage signal can be seized more easily even in small release cases. Hence, the fitting approximation of time series prediction model is a potential excellent method to capture atmospheric abnormal signal for CO2 storage and transportation technologies. 展开更多
关键词 leakage identification Process safety gas leakage Monitoring carbon sequestration CO2 storage
下载PDF
Experimental and numerical investigation on the gas leakage regime for ventilated tail cavity of an underwater vehicle 被引量:1
3
作者 Xiao-bo Quan Shao-hua Cheng 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第1期46-60,共15页
The objective of this paper is mainly to investigate the ventilated tail cavity flow of an underwater vehicle with focus on the gas leakage regime by experimental and numerical methods.A high-speed camera and pressure... The objective of this paper is mainly to investigate the ventilated tail cavity flow of an underwater vehicle with focus on the gas leakage regime by experimental and numerical methods.A high-speed camera and pressure measurement system are used to record the cavity flow patterns and pressure behavior,respectively.The numerical simulation is carried out with volume of fluid(VOF)model and Filter-based turbulence model(FBM).Good agreement can be obtained between the experimental and numerical results.There are three gas leakage types in the evolution of the intact tail cavity,i.e.,twin-vortex tube entrainment(TVTE),toroidal vortex shedding(TVS)and hybrid twin-vortex tube entrainment and toroidal vortex shedding(TVTE-TVS).With the increase of Fr,the unsteady behavior of the cavity with different gas leakage types becomes more apparent.The internal flow characteristics revealed three distinct regions including the ventilation influence region,the reverse flow region and the high shear flow region and have an important effect on the transition of gas leakage regime. 展开更多
关键词 Ventilated tail cavity gas leakage regime unsteady behavior internal flow characteristics
原文传递
Gas leakage mechanism in bedded salt rock storage cavern considering damaged interface 被引量:4
4
作者 Jun Xiong Xiaolan Huang Hongling Ma 《Petroleum》 2015年第4期366-372,共7页
During the long-time operation of salt rock storage cavern,between its formations,damaged interfaces induced by discontinuous creep deformations between adjacent layers will possibly lead to serious gas leakage.In thi... During the long-time operation of salt rock storage cavern,between its formations,damaged interfaces induced by discontinuous creep deformations between adjacent layers will possibly lead to serious gas leakage.In this paper,damaged interfaces are considered as main potential leakage path:firstly in meso-level,gas flow rule along the interface is analyzed and the calculation of equivalent permeability is discussed.Then based on porous media seepage theory,gas leakage simulation model including salt rock,cavity interlayers and interface is built.With this strategy,it is possible to overcome the disadvantage of simulation burden with porous-fractured double medium.It also can provide the details of gas flowing along the damaged zones.Finally this proposal is applied to the salt cavern in Qianjian mines(East China).Under different operation pressures,gas distributions around two adjacent cavities are simulated;the evolvement of gas in the interlayers and salt rock is compared.From the results it is demonstrated that the domain of creep damage area has great influence on leakage range.And also the leakage in the interface will accelerate the development of leakage in salt rock.It is concluded that compared with observations,this new strategy provides closer answers.The simulation result proves its validity for the design and reasonable control of operating pressure and tightness evaluation of group bedded salt rock storage caverns. 展开更多
关键词 Bedded salt rock gas leakage Equivalent permeability Numerical simulation
原文传递
Rock engineering problems related to underground hydrocarbon storage 被引量:2
5
作者 Ming Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期289-297,共9页
Oil and gas can be stored underground by a variety of means,such as in depleted oil and gas fields,in aquifers,in rock salt caverns,in unlined mined rock caverns,in lined shallow caverns and abandoned mines.Different ... Oil and gas can be stored underground by a variety of means,such as in depleted oil and gas fields,in aquifers,in rock salt caverns,in unlined mined rock caverns,in lined shallow caverns and abandoned mines.Different types of underground storages require different geological and hydrogeological conditions and are associated with different rock engineering problems.However,the common issue is to ensure the gas-and oil-tightness of storage caverns.In other words,the stored oil and gas must not escape from the storage caverns.This may be realized by different means according to the types of storages and the sites geological conditions.There are basically two approaches of gas leakage control,i.e.permeability control and hydrodynamic containment.The latter involves the use of a water curtain system in many cases,which creates an artificial hydraulic boundary condition and helps to establish the required groundwater condition when needed.In addition to the common problems,the underground storage of liquefied petroleum gas(LPG) requires special attentions to the opening of rock joints,which result from the tensile thermal stress induced by the low storage temperature.Great care must be taken in choosing abandoned mines for oil and gas-storage since it is quite rare that the natural site conditions can meet the usual requirements,in particular for the gas tightness.The paper provides a general description of the gas leakage control for underground oil and gas storage projects,and addresses various rock engineering problems associated with selected types of storages in detail. 展开更多
关键词 oil storage gas storage rock cavern rock mechanics gas leakage
下载PDF
Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau 被引量:2
6
作者 Xin Zhang LiFeng Zhang 《Earth and Planetary Physics》 CSCD 2020年第3期296-307,共12页
Co-seismic gas leakage usually occurs on the edge of seismic faults in petroliferous basins,and it may have an impact on the local environment,such as the greenhouse effect,which can cause thermal infrared brightness ... Co-seismic gas leakage usually occurs on the edge of seismic faults in petroliferous basins,and it may have an impact on the local environment,such as the greenhouse effect,which can cause thermal infrared brightness anomalies.Using wavelet transform and power spectrum estimation methods,we processed brightness temperature data from the Chinese geostationary meteorological satellite FY-C/E.We report similarities between the co-seismic thermal infrared brightness(CTIB)anomalies before,during and after earthquakes that occurred at the edges of the Sichuan,Tarim,Qaidam,and Junggar basins surrounding the North and East of the Qinghai–Tibet Plateau in western China.Additionally,in each petroliferous basin,the area of a single CTIB anomaly accounted for 50%to 100%of the basin area,and the spatial distribution similarities in the CTIB anomalies existed before,during and after these earthquakes.To better interpret the similarities,we developed a basin warming effect model based on geological structures and topography.The model suggests that in a petroliferous basin with a subsurface gas reservoir,gas leakage could strengthen with the increasing stress before,during,and even after an earthquake.The accumulation of these gases,such as the greenhouse gases CH4 and CO2,results in the CTIB anomalies.In addition,we conclude that the CTIB anomalies are strengthened by the high mountains(altitude^5000 m)around the basins and the basins’independent climatic conditions.This work provides a new perspective from which to understand the CTIB anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau. 展开更多
关键词 co-seismic thermal infrared brightness(CTIB) relative power spectrum(RPS) gas leakage basin warming effect
下载PDF
A Robust and Efficient Compressed Sensing Algorithm for Wideband Acoustic Imaging
7
作者 Fangli Ning Zhe Liu +3 位作者 Jiahao Song Feng Pan Pengcheng Han Juan Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第6期77-92,共16页
Wideband acoustic imaging,which combines compressed sensing(CS)and microphone arrays,is widely used for locating acoustic sources.However,the location results of this method are unstable,and the computational efficien... Wideband acoustic imaging,which combines compressed sensing(CS)and microphone arrays,is widely used for locating acoustic sources.However,the location results of this method are unstable,and the computational efficiency is low.In this work,in order to improve the robustness and reduce the computational cost,a DCS-SOMP-SVD compressed sensing method,which combines the distributed compressed sensing using simultaneously orthogonal matching pursuit(DCS-SOMP)and singular value decomposition(SVD)is proposed.The performance of the DCS-SOMP-SVD is studied through both simulation and experiment.In the simulation,the locating results of the DCS-SOMP-SVD method are compared with the wideband BP method and the DCS-SOMP method.In terms of computational efficiency,the proposed method is as efficient as the DCS-SOMP method and more efficient than the wideband BP method.In terms of locating accuracy,the proposed method can still locate all sources when the signal to noise ratio(SNR)is−20 dB,while the wideband BP method and the DCS-SOMP method can only locate all sources when the SNR is higher than 0 dB.The performance of the proposed method can be improved by expanding the frequency range.Moreover,there is no extra source in the maps of the proposed method,even though the target sparsity is overestimated.Finally,a gas leak experiment is conducted to verify the feasibility of the DCS-SOMP-SVD method in the practical engineering environment.The experimental results show that the proposed method can locate both two leak sources in different frequency ranges.This research proposes a DCS-SOMP-SVD method which has sufficient robustness and low computational cost for wideband acoustic imaging. 展开更多
关键词 Wideband acoustic imaging Compressed sensing Singular value decomposition Microphone array gas leakage
下载PDF
Numerical and experimental analyses of methane leakage in shield tunnel
8
作者 Jie HE Hehua ZHU +3 位作者 Xiangyang WEI Rui JIN Yaji JIAO Mei YIN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第7期1011-1020,共10页
Tunnels constructed in gas-bearing strata are affected by the potential leakage of harmful gases,such as methane gas.Based on the basic principles of computational fluid dynamics,a numerical analysis was performed to ... Tunnels constructed in gas-bearing strata are affected by the potential leakage of harmful gases,such as methane gas.Based on the basic principles of computational fluid dynamics,a numerical analysis was performed to simulate the ventilation and diffusion of harmful gases in a shield tunnel,and the effect of ventilation airflow speed on the diffusion of harmful gases was evaluated.As the airflow speed increased from 1.8 to 5.4 m/s,the methane emission was diluted,and the methane accumulation was only observed in the area near the methane leakage channels.The influence of increased ventilation airflow velocity was dominant for the ventilation modes with two and four fans.In addition,laboratory tests on methane leakage through segment joints were performed.The results show that the leakage process can be divided into“rapid leakage”and“slight leakage”,depending on the leakage pressure and the state of joint deformation.Based on the numerical and experimental analysis results,a relationship between the safety level and the joint deformation is established,which can be used as guidelines for maintaining utility tunnels. 展开更多
关键词 shield tunnel harmful gas leakage numerical analysis laboratory test
原文传递
Experimental and numerical investigation of gas diffusion under an urban underground construction 被引量:1
9
作者 Kang Zhou Fei Li +4 位作者 Hao Cai Yibin Yang Fusheng Peng Li Chen Junyi Zhuang 《Energy and Built Environment》 2021年第4期436-444,共9页
Rapid increase of urban underground constructions has a great consideration of underground environment safety and how to expel toxic gasses out of tunnels effectively.The utility tunnel is a typical urban tunnel const... Rapid increase of urban underground constructions has a great consideration of underground environment safety and how to expel toxic gasses out of tunnels effectively.The utility tunnel is a typical urban tunnel construction with multiple underground pipelines including gas pipelines,and it is necessary to investigate characteristic of gas diffusion and monitor gas leakage to ensure tunnel safety.In this study,the experimental measurements of airflow and gas distributions were conducted in a 10 m full-scaled utility tunnel mockup,and gas diffusion characteristic was also investigated.Numerical simulation of utility tunnel leakage was also conducted by computational fluid dynamics(CFD).Different turbulence models and different air supply diffuser models were compared via the experimental results based on visualization and the relative root-mean-square error(RRMSE)index,which quan-titated the difference between the numerical and experimental results.The results showed that the standard k−εturbulence model and random air opening model could provide better results than other models.According to the experimental data analysis,it was necessary to consider the optimization of monitoring detector arrangements in actual utility tunnels.This study provided basic experimental data and the validated numerical model for the leakage source identification and underground tunnels simulation research. 展开更多
关键词 Urban tunnel gas leakage gas dispersion CFD Turbulence model Air supply diffuser
原文传递
Performance test of the low-pressure thin window multi-wire chamber
10
作者 张俊伟 鲁辰桂 +5 位作者 段利敏 马龙 胡荣江 杨贺润 马朋 甘再国 《Chinese Physics C》 SCIE CAS CSCD 2014年第2期57-60,共4页
A flow gas low-pressure multi-wire proportional chamber(LPMWPC) with an active area of 180 mm× 80 mm has been developed for the flying time test of the recoil nuclei on super heavy nuclear experiments. The LPMW... A flow gas low-pressure multi-wire proportional chamber(LPMWPC) with an active area of 180 mm× 80 mm has been developed for the flying time test of the recoil nuclei on super heavy nuclear experiments. The LPMWPC detector can be operated in single as well as double step operational modes. In the case of double step operational mode with a high gas amplification factor, signals from α-particles reside well above the electronic noise. The gas leakage rate and time resolution obtained from the α239Pu source are shown and discussed at the condition of 3 mbar Isobutane gas. It was shown that the time resolution was better than 2.9 ns at the best work condition, and the detecting efciency was larger than 98% at the low energy α particles. So the LPMWPC is fit to measure the flying time in the super heavy nuclear fragments experiment. 展开更多
关键词 LPMWPC gas leakage rate time resolution detecting efciency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部