期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Microscopic properties and sealing performance of new gas drainage drilling sealing material 被引量:5
1
作者 Zhai Cheng Yu Xu +2 位作者 Ni Guanhua Li Min Hao Zhiyong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期474-479,共6页
The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentrat... The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentration attenuates rapidly,and the effective gas drainage period is short.The traditional sealing materials of yellow mud and cement-sand grout will readily shrink after the drilling hole is sealed,the sealing length is short and the sealing quality is not satisfactory.Currently widely used polyurethane material will shrink when it comes into contact with water,and the price is also very high.In this study,taking cement as a base material,a novel composite sealing material mixed by expansion admixture,additive,and fbrin and coupling agent was developed and the sealing performance and expansion property of the material were also studied and analyzed.The FEI Quanta TM 250 environmental scanning electron microscope was used to investigate the microstructure of material.The results revealed that the new composite sealing material had a desirable expansion performance and a defnite fluidity convenient for grouting.The solidifed material,combining closely with the drilling wall,possessed an adequate strength and was not easy to shrink.Compared to the conventional polyurethane,the gas drainage concentration by drilling sealing exceeded 40 percent,and the sealing capacity improves5 times,the sealing effect increases signifcantly. 展开更多
关键词 Drilling sealing material Microcosmic structure gas drainage sealing performance
下载PDF
Gas Film Disturbance Characteristics Analysis of High-Speed and High-Pressure Dry Gas Seal 被引量:14
2
作者 CHEN Yuan JIANG Jinbo PENG Xudong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1226-1233,共8页
The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's abili... The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS. 展开更多
关键词 high-speed and high-pressure dry gas seal gas film thickness disturbance dynamic tracking property
下载PDF
Leakage and Stiffness Characteristics of Bionic Cluster Spiral Groove Dry Gas Seal 被引量:3
3
作者 Jin-Bo Jiang Xu-Dong Peng +1 位作者 Ji-Yun Li Yuan Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期148-158,共11页
Spiral groove dry gas seal(S?DGS), the most widely used DGS in the world, encounters the problem of high leakage rate and inferior film stability when used in high?speed machinery equipment, which could not be well so... Spiral groove dry gas seal(S?DGS), the most widely used DGS in the world, encounters the problem of high leakage rate and inferior film stability when used in high?speed machinery equipment, which could not be well solved by optimization of geometrical parameters and molded line of spiral groove. A new type of bionic cluster spiral groove DGS(CS?DGS) is proved to have superior film stability than S?DGS at the condition of high?speed and low?pressure numerically. A bionic CS?DGS is experimentally investigated and compared with common S?DGS in order to provide evidence for theoretical study. The film thickness and leakage rate of both bionic spiral groove and common spiral groove DGS are measured and compared with each other and with theoretical values under different closing force at the condition of static pressure, high?speed and low?pressure, and the film stiffness and stiffness?leakage ratio of these two face seals are derived by the relationship between closing force and film thickness at the steady state. Experimental results agree well with the theory that the leakage and stiffness of bionic CS?DGS are superior to that of common S?DGS under the condition of high?speed and low?pressure, with the decreasing amplitude of 20% to 40% and the growth amplitude of 20%, respectively. The opening performance and stiffness characteristics of bionic CS?DGS are inferior to that of common S?DGS when rotation speed equals to 0 r/min. The proposed research provides a new method to measure the axis film stiffness of DGS, and validates the superior performance of bionic CS?DGS at the condition of high?speed and low?pressure experimentally. 展开更多
关键词 Bionic cluster spiral groove Film stiffness Dry gas seal Leakage rate
下载PDF
Application of Fractal Contact Model in Dynamic Performance Analysis of Gas Face Seals 被引量:3
4
作者 Song-Tao Hu Wei-Feng Huang +1 位作者 Xiang-Feng Liu Yu-Ming Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期137-147,共11页
Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. Th... Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. The present study introduces the fractal theory into the dynamic research of gas face seals under face?contacting conditions. Structure?Function method is adopted to handle the surface profiles of typical carbon?graphite rings, proving the fractal con?tact model can be used in the field of gas face seals. Using a numerical model established for the dynamic analyses of a spiral groove gas face seal with a flexibly mounted stator, a comparison of dynamic performance between the Majumdar?Bhushan(MB) fractal model and the Chang?Etsion?Bogy(CEB) statistical model is performed. The result shows that the two approaches induce differences in terms of the occurrence and the level of face contact. Although the approach distinctions in film thickness and leakage rate can be tiny, the distinctions in contact mechanism and end face damage are obvious. An investigation of fractal parameters D and G shows that a proper D(nearly 1.5) and a small G are helpful in raising the proportion of elastic deformation to weaken the adhesive wear in the sealing dynamic performance. The proposed research provides a fractal approach to design gas face seals. 展开更多
关键词 Fractal theory Asperity contact gas face seal Dynamic performance
下载PDF
Modes of Shale-Gas Enrichment Controlled by Tectonic Evolution 被引量:4
5
作者 LI Chaochun OU Chenghua 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第5期1934-1947,共14页
The typical characteristics of shale gas and the enrichment differences show that some shale gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include the Wufeng–Longmax... The typical characteristics of shale gas and the enrichment differences show that some shale gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include the Wufeng–Longmaxi shale gas in the Jiaoshiba and Youyang Blocks, the Lewis shale gas in the San Juan Basin. Further analysis reveals three static subsystems(hydrocarbon source rock, gas reservoirs and seal formations) and four dynamic subsystems(tectonic evolution, sedimentary sequence, diagenetic evolution and hydrocarbon-generation history) in shale-gas enrichment systems. Tectonic evolution drives the dynamic operation of the whole shale-gas enrichment system. The shale-gas enrichment modes controlled by tectonic evolution are classifiable into three groups and six subgroups. Group I modes are characterized by tectonically controlled hydrocarbon source rock, and include continuous in-situ biogenic shale gas(Ⅰ_1) and continuous in-situ thermogenic shale gas(Ⅰ_2). Group Ⅱ modes are characterized by tectonically controlled gas reservoirs, and include anticline-controlled reservoir enrichment(Ⅱ_1) and fracture-controlled reservoir enrichment(Ⅱ_2). Group Ⅲ modes possess tectonically controlled seal formations, and include faulted leakage enrichment(Ⅲ_1) and eroded residual enrichment(Ⅲ_2). In terms of quantity and exploitation potential, Ⅰ_1 and Ⅰ_2 are the best shale-gas enrichment modes, followed by Ⅱ_1 and Ⅱ_2. The least effective modes are Ⅲ_1 and Ⅲ_2. The categorization provides a different perspective for deep shale-gas exploration. 展开更多
关键词 shale gas enrichment mode tectonic evolution hydrocarbon source gas reservoir seal formation
下载PDF
Influence Analysis of Secondary O-ring Seals in Dynamic Behavior of Spiral Groove Gas Face Seals 被引量:15
6
作者 HU Songtao HUANG Weifeng +1 位作者 LIU Xiangfeng WANG Yuming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期507-514,共8页
The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face se... The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior(steady-state performance and transient performance) of face seals. A numerical finite element method(FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals. 展开更多
关键词 spiral groove gas face seal secondary O-ring seals dynamic property
下载PDF
Experiment on Wear Behavior of High Pressure Gas Seal Faces 被引量:1
7
作者 XU Jing PENG Xudong +2 位作者 BAI Shaoxian MENG Xiangkai LI Jiyun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1287-1293,共7页
Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pre... Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%–25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures. 展开更多
关键词 dry gas seal STRUCTURES face wear high pressure mechanical deformation
下载PDF
Dynamic Coupling Correlation of Gas Film in Dry Gas Seal with Spiral Groove 被引量:1
8
作者 LIU Zhengxian WANG Musu +1 位作者 ZHOU Yue WU Ningning 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期853-859,共7页
In working state, the dynamic performance of dry gas seal, generated by the rotating end face with spiral grooves, is determined by the open force of gas film and leakage flow rate. Generally, the open force and the l... In working state, the dynamic performance of dry gas seal, generated by the rotating end face with spiral grooves, is determined by the open force of gas film and leakage flow rate. Generally, the open force and the leakage flow rate can be obtained by finite element method, computational fluid dynamics method and experimental measurement method. However, it will take much time to carry out the above measurements and calculations. In this paper, the approximate model of parallel grooves based on the narrow groove theory is used to establish the dynamic equations of the gas film for the purpose of obtaining the dynamic parameters of gas film. The nonlinear differential equations of gas film model are solved by Runge-Kutta method and shooting method. The numerical values of the pressure profiles, leakage flux and opening force on the seal surface are integrated, and then compared to experimental data for the reliability of the numerical simulation. The results show that the numerical simulation curves are in good agreement with experimental values. Furthermore, the opening force and the leakage flux are proved to be strongly correlated with the operating parameters. Then, the function-coupling method is introduced to analyze the numerical results to obtain the correlation formulae of the opening force and leakage flux respectively with the operating parameters, i.e., the inlet pressure and the rotating speed. This study intends to provide an effective way to predict the aerodynamic performance for designing and optimizing the groove styles in dry gas seal rapidly and accurately. 展开更多
关键词 dry gas seal spiral groove gas film dynamic data fitting method coupling function
下载PDF
A Hydrodynamic Model for Dimpled Mechanical Gas Seal Considering Interaction Effect 被引量:1
9
作者 时礼平 黄巍 王晓雷 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第4期438-445,共8页
The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dim... The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dimpled annular area of mechanical gas seal considering the″interaction effect″between adjacent dimples is developed based on the Reynolds equation.Different multi-row columns are chosen and the dimensionless pressure in radial and circumferential directions is calculated.The results indicate that the″interaction effect″is more obvious in the circumferential direction than in the radial direction,even when the area and depth of the dimples are same.Moreover,for the 5×5column,the dimensionless average pressure considering the″interaction effect″increases by45.41% compared with the 1×5column.Further analysis demonstrates that the model with the 5×5column can be more reasonable with the consideration of reducing the calculation error caused by boundary conditions to investigate the hydrodynamic effect for dimpled mechanical gas seal. 展开更多
关键词 surface texture mechanical gas seal hydrodynamic effect interaction effect aero engine
下载PDF
Discriminative Features of Abnormities in a Spiral Groove Gas Face Seal Based on Dynamic Model Considering Contact
10
作者 Yuan Yin Weifeng Huang +3 位作者 Decai Li Songtao Hu Xiangfeng Liu Ying Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第2期135-149,共15页
It is a difficult task to root the cause of the failure of a gas face seal because different causes may result in similar observations.In the work being presented,the discrimination of multiple types of abnormities in... It is a difficult task to root the cause of the failure of a gas face seal because different causes may result in similar observations.In the work being presented,the discrimination of multiple types of abnormities in a spiral groove gas face seal is studied.A dynamic model is employed to analyze groups of cases in order to uncover the dynamic behaviors when the face contact is induced by different mixtures of abnormities,whose discriminative features when motion and contact are monitored are studied and uncovered.A circumferential-pattern-related oscillation phenomenon is discovered,which is extracted from contact information and implies the relative magnitude of the moment on stator and the rotor tilt.The experimental observation shows consistent results.It means that the grooves(or other circumferential patterns)generate useful informative features for monitoring.These results provide guidance for designing a monitored gas face seal system. 展开更多
关键词 gas face seals DYNAMICS TRIBOLOGY Nonlinear system
下载PDF
Influence of the Gas Mixture Ratio on the Correlations Between the Excimer XeCl Emission and the Sealed Gas Temperature in Dielectric Barrier Discharge Lamps
11
作者 徐金洲 梁荣庆 任兆杏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第4期1411-1416,共6页
For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl* emission and the sealed gas temperature have been founded, and a qualitative explication is pre... For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl* emission and the sealed gas temperature have been founded, and a qualitative explication is presented. For gas mixture with chlorine larger than 3%, the emission intensity increases with the sealed gas temperature, while with chlorine about 2%, the emission intensity decreases with the increase in the gas temperature, and could be improved by cooling water. However, if chlorine is less than 1.5%, the discharge appears to be a mixture mode with filaments distributed in a diffused glow-like discharge, and the UV emission is independent on the gas temperature. 展开更多
关键词 dielectric barrier discharge lamps gas mixture ratio XeCl emission sealed gas temoerature
下载PDF
The mass and heat transfer process through the door seal of refrigeration 被引量:3
12
作者 Haoshu Tan Xinzhou Song +1 位作者 Ying Zhang Maogang He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1115-1119,共5页
As one of the main reasons causing leakage heat load in a refrigerator,mass and heat transfer through refrigerator door seal is of great importance to be studied.In this paper,a model is presented for numerical simula... As one of the main reasons causing leakage heat load in a refrigerator,mass and heat transfer through refrigerator door seal is of great importance to be studied.In this paper,a model is presented for numerical simulation of mass and heat transfer process through refrigerator door seal,and an experiment apparatus is designed and set up as well for comparison.A two-dimensional model and tracer gas method are used in simulation and experiment,respectively.It can be found that the relative deviations of air infiltration rate between the simulated results and experimental results were less than 1%,and the temperature difference errors at two special points of the door seal were less than 2.03℃.In conclusion,the simulated results are in good agreement with the experimental results.This paper initially sets up a model that can accurately simulate the heat and mass transfer through the refrigerator door seal,and the model can be used in refrigerator door seal optimization research in the follow-up study. 展开更多
关键词 Refrigerator Door Seal Air infiltration Numerical simulation Tracer gas method
下载PDF
Study on seal improvement and rotor thrust control of centrifugal compressor
13
作者 王维民 Gao Jinji Li Shuangxi Jiang Zhinong 《High Technology Letters》 EI CAS 2007年第3期273-278,共6页
Fluid pressure variations due to process fluctuations or balance drum seal degradation can result in rotor thrust increasing that may jeopardize thrust bearing and compressor’s reliability. Also, the leakage flow thr... Fluid pressure variations due to process fluctuations or balance drum seal degradation can result in rotor thrust increasing that may jeopardize thrust bearing and compressor’s reliability. Also, the leakage flow through balance drum seal can seriously affect the efficiency of compressor. A method that can improve both the efficiency and reliability of centrifugal compressor is presented. The method focused on rotor thrust control and balance drum seal upgrading. The low leakage feature of Dry-Gas-Seal(DGS), high reliability of labyrinth, and the feasibility of upgrading existing structure are taken into account at the same time to design a combined labyrinth-dry gas seal system on the balancing drum. Based on the combined seal system, a Fault Self-Recovering(FSR) system for the fault of rotor shaft displacement is introduced to assure the safety and reliability of centrifugal compressor. The modern Computational Fluid Dynamics(CFD) is used to validate this envision. The numerical result and relevant information indicate that the combined sealing system could improve the efficiency of the centrifugal compressor by about 4%. 展开更多
关键词 centrifugal compressor EFFICIENCY dry gas seal rotor thrust FSR
下载PDF
A Comparative Study on the Performance of Typical Types of Bionic Groove Dry Gas Seal based on Bird Wing 被引量:16
14
作者 Jinbo Jiang Xudong Peng +1 位作者 Jiyun Li Yuan Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第2期324-334,共11页
A series of bionic grooves based on bird wing, such as cluster spiral groove, multi-array spiral groove and flow-split spiral groove, are introduced to improve the film stiffness and sealing properties of dry gas seal... A series of bionic grooves based on bird wing, such as cluster spiral groove, multi-array spiral groove and flow-split spiral groove, are introduced to improve the film stiffness and sealing properties of dry gas seal. A theoretical model solved with Finite Difference Method (FMD) is developed to study the static sealing performance, such as film stiffness and leakage rate of these bionic groove dry gas seals. Then, a performance comparative study between the bionic groove dry gas seals and common spiral groove dry gas seal with different groove geometry parameters such as groove depth ratio, spiral angle and micro groove number under different average linear velocity at seal ring face and seal pressure is carried out. The closing force, film thickness and leakage rate of dry gas seals with bionic grooves and common spiral groove are measured experimentally. Results show that cluster spiral groove and multi-array spiral groove dry gas seals have superiority in the film stiffness and stiffness-leakage ratio compared with common spiral groove under the condition of high-speed and low-pressure, while flow-split spiral groove dry gas seal has no obvious advantages of performance. Film stiffness of cluster spiral groove dry gas seal and stiffness-leakage ratio of multi-array spiral groove dry gas are 20% and 50% larger than that of common spiral groove dry gas seal, respectively, which are verified by the experimental results. 展开更多
关键词 bionic groove dry gas seal film stiffness performance comparison
原文传递
Method for solving the nonlinear inverse problem in gas face seal diagnosis based on surrogate models
15
作者 Yuan YIN Weifeng HUANG +3 位作者 Decai LI Qiang HE Xiangfeng LIU Ying LIU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第3期229-243,共15页
Physical models carry quantitative and explainable expert knowledge.However,they have not been introduced into gas face seal diagnosis tasks because of the unacceptable computational cost of inferring the input fault ... Physical models carry quantitative and explainable expert knowledge.However,they have not been introduced into gas face seal diagnosis tasks because of the unacceptable computational cost of inferring the input fault parameters for the observed output or solving the inverse problem of the physical model.The presented work develops a surrogate-model-assisted method for solving the nonlinear inverse problem in limited physical model evaluations.The method prepares a small initial database on sites generated with a Latin hypercube design and then performs an iterative routine that benefits from the rapidity of the surrogate models and the reliability of the physical model.The method is validated on simulated and experimental cases.Results demonstrate that the method can effectively identify the parameters that induce the abnormal signal output with limited physical model evaluations.The presented work provides a quantitative,explainable,and feasible approach for identifying the cause of gas face seal contact.It is also applicable to mechanical devices that face similar difficulties. 展开更多
关键词 surrogate model gas face seal fault diagnosis nonlinear dynamics TRIBOLOGY
原文传递
High-Speed Rubbing Behavior of Abrasive Coating Coated on Titanium Alloy Blade Tips
16
作者 Wenshuang Gu Shuai Yang +5 位作者 Shiyi Zhang Zhiliang Pei Weihai Xue Deli Duan Jun Gong Chao Sun 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第4期749-762,共14页
In aero-engines, abrasive coatings are typically utilized to protect the blade tip from excessive wear caused by the harder abradable sealing coating and thereby improve the sealing performance of engines. Therefore, ... In aero-engines, abrasive coatings are typically utilized to protect the blade tip from excessive wear caused by the harder abradable sealing coating and thereby improve the sealing performance of engines. Therefore, a Ni/cBN abrasive coating was prepared on titanium alloy using electrodeposition. The high-speed rubbing tests with a linear velocity of 350 m/s and different incursion rates were performed to investigate the effect of the Ni/cBN abrasive coating on the wear behavior against NiCrAl/diatomite seal coating. Results showed that melting wear and adhesive transfer occurred on the bare blades, causing the bare blade to suffer excessive wear. While the Ni/cBN abrasive coating exhibited superior wear resistance and cutting performance. The cBN grits pullout, the abrasion of Ni matrix and transfer of seal coating to the cBN grits were the main wear mechanism of the Ni/cBN abrasive coating. Additionally, it was found that the relationship between the incursion rate and high-speed rubbing behavior is quite different for the bare blade and Ni/cBN coating. The reason for the difference in wear behavior of bare blade and Ni/cBN coating at different incursion rates was discussed in detail. 展开更多
关键词 gas turbine sealing Abrasive coating High-speed rubbing Material transfer Abradable coating
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部