期刊文献+
共找到212篇文章
< 1 2 11 >
每页显示 20 50 100
Enlightenment of calcite veins in deep Ordovician Wufeng-Silurian Longmaxi shales fractures to migration and enrichment of shale gas in southern Sichuan Basin, SW China
1
作者 CUI Yue LI Xizhe +5 位作者 GUO Wei LIN Wei HU Yong HAN Lingling QIAN Chao ZHAO Jianming 《Petroleum Exploration and Development》 SCIE 2023年第6期1374-1385,共12页
The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through ... The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through core and thin section observations, cathodoluminescence analysis, isotopic geochemistry analysis, fluid inclusion testing, and basin simulation. Tectonic fracture calcite veins mainly in the undulating part of the structure and non-tectonic fracture calcite veins are mainly formed in the gentle part of the structure. The latter, mainly induced by hydrocarbon generation, occurred at the stage of peak oil and gas generation, while the former turned up with the formation of Luzhou paleouplift during the Indosinian. Under the influence of hydrocarbon generation pressurization process, fractures were opened and closed frequently, and oil and gas episodic activities are recorded by veins. The formation pressure coefficient at the maximum paleodepth exceeds 2.0. The formation uplift stage after the Late Yanshanian is the key period for shale gas migration. Shale gas migrates along the bedding to the high part of the structure. The greater the structural fluctuation is, the more intense the shale gas migration activity is, and the loss is more. The gentler the formation is, the weaker the shale gas migration activity is, and the loss is less. The shale gas enrichment in the core of gentle anticlines and gentle synclines is relatively higher. 展开更多
关键词 Sichuan Basin deep formation in southern Sichuan Basin Ordovician Wufeng Formation Silurian Longmaxi Formation fracture calcite vein fluid inclusion shale gas enrichment model
下载PDF
Development,challenges and strategies of natural gas industry under carbon neutral target in China
2
作者 ZOU Caineng LIN Minjie +10 位作者 MA Feng LIU Hanlin YANG Zhi ZHANG Guosheng YANG Yichao GUAN Chunxiao LIANG Yingbo WANG Ying XIONG Bo YU Hao YU Ping 《Petroleum Exploration and Development》 SCIE 2024年第2期476-497,共22页
In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas... In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas revolution,summarizes the development history and achievements of the natural gas industry in China,analyzes the status and challenges of natural gas in the green and low-carbon energy transition,and puts forward the natural gas industry development strategies under carbon neutral target in China.The natural gas industry in China has experienced three periods:start,growth,and leap forward.At present,China has become the fourth largest natural gas producer and third largest natural gas consumer in the world,and has made great achievements in natural gas exploration and development theory and technology,providing important support for the growth of production and reserves.China has set its goal of carbon neutrality to promote green and sustainable development,which brings opportunities and challenges for natural gas industry.Natural gas has significant low-carbon advantages,and gas-electric peak shaving boosts new energy development;the difficulty and cost of development are more prominent.For the national energy security and harmonious development between economy and ecology under the carbon neutral goal,based on the principle of"comprehensive planning,technological innovation,multi-energy complementarity,diversified integration,flexibility and efficiency,optimization and upgrading",the construction of the production-supplystorage-marketing system has to be improved so as to boost the development of the natural gas industry.First,it is necessary to strengthen efforts in the exploration and development of natural gas,making projects and arrangement in key exploration and development areas,meanwhile,it is urgent to make breakthroughs in key science theories and technologies,so as to increase reserve and production.Second,it should promote green and innovative development of the natural gas by developing new techniques,expanding new fields and integrating with new energy.Third,there is a demand to realize transformation and upgrading of the supply and demand structure of natural gas by strengthening the layout of pipeline gas,liquefied natural gas and the construction of underground gas storage,establishing reserve system for improving abilities of emergency response and adjustment,raising the proportion of natural gas in the primary energy consumption and contributing to the transformation of energy consumption structure,realizing low-carbon resources utilization and clean energy consumption. 展开更多
关键词 carbon neutrality natural gas shale gas tight gas coalbed methane new energy energy transition
下载PDF
Optimization method of refracturing timing for old shale gas wells
3
作者 WANG Qiang ZHAO Jinzhou +2 位作者 HU Yongquan LI Yongming WANG Yufeng 《Petroleum Exploration and Development》 SCIE 2024年第1期213-222,共10页
Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for f... Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for fractured shale gas reservoirs is established,the optimization method of refracturing timing is proposed,and the influencing factors of refracturing timing are analyzed based on the data from shale gas well in Fuling of Sichuan Basin.The results show that due to the depletion of formation pressure,the percentage of the maximum horizontal principal stress reversal area in the total area increases and then decreases with time.The closer the area is to the hydraulic fracture,the shorter the time for the peak of the stress reversal area percentage curve to appear,and the shorter the time for the final zero return(to the initial state).The optimum time of refracturing is affected by matrix permeability,initial stress difference and natural fracture approach angle.The larger the matrix permeability and initial stress difference is,the shorter the time for stress reversal area percentage curve to reach peak and return to the initial state,and the earlier the time to take refracturing measures.The larger the natural fracture approach angle is,the more difficult it is for stress reversal to occur near the fracture,and the earlier the optimum refracturing time is.The more likely the stress reversal occurs at the far end of the artificial fracture,the later the optimal time of refracturing is.Reservoirs with low matrix permeability have a rapid decrease in single well productivity.To ensure economic efficiency,measures such as shut-in or gas injection can be taken to restore the stress,and refracturing can be implemented in advance. 展开更多
关键词 shale gas well fully coupled seepage-geomechanical model REFRACTURING timing optimization influencing factor
下载PDF
Geological conditions and reservoir characteristics of various shales in major shalehosted regions of China
4
作者 Shu-jing Bao Tian-xu Guo +6 位作者 Jin-tao Yin Wei-bin Liu Sheng-jian Wang Hao-han Li Zhi Zhou Shi-zhen Li Xiang-lin Chen 《China Geology》 CAS CSCD 2024年第1期138-149,共12页
China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major ... China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major controlling factors.This study compared the geological characteristics of various shales and analyzed the influences of different parameters on the formation and accumulation of shale gas.In general,shales in China’s several regions exhibit high total organic carbon(TOC)contents,which lays a sound material basis for shale gas generation.Marine strata generally show high degrees of thermal evolution.In contrast,continental shales manifest low degrees of thermal evolution,necessitating focusing on areas with relatively high degrees of thermal evolution in the process of shale gas surveys for these shales.The shales of the Wufeng and Silurian formations constitute the most favorable shale gas reservoirs since they exhibit the highest porosity among the three types of shales.These shales are followed by those in the Niutitang and Longtan formations.In contrast,the shales of the Doushantuo,Yanchang,and Qingshankou formations manifest low porosities.Furthermore,the shales of the Wufeng and Longmaxi formations exhibit high brittle mineral contents.Despite a low siliceous mineral content,the shales of the Doushantuo Formation feature a high carbonate mineral content,which can increase the shales’brittleness to some extent.For marine-continental transitional shales,where thin interbeds of tight sandstone with unequal thicknesses are generally found,it is recommended that fracturing combined with drainage of multiple sets of lithologic strata should be employed to enhance their shale gas production. 展开更多
关键词 Shale gas Marine shale Continental shale Marine-continental transitional shale Neoproterozoic-Cretaceous strata Geological conditions Reservoir characteristics Petroleum geological survey engineering
下载PDF
Optimizing the Diameter of Plugging Balls in Deep Shale Gas Wells
5
作者 Yi Song Zheyu Hu +5 位作者 Cheng Shen Lan Ren Xingwu Guo Ran Lin Kun Wang Zhiyong Zhao 《Fluid Dynamics & Materials Processing》 EI 2024年第3期609-624,共16页
Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to theproximity of each fracture during the formation of the fracture network, there is significant stress i... Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to theproximity of each fracture during the formation of the fracture network, there is significant stress interference,which results in uneven fracture propagation. It is common practice to use “balls” to temporarily plug fractureopenings in order to lessen liquid intake and achieve uniform propagation in each cluster. In this study, a diameteroptimization model is introduced for these plugging balls based on a multi-cluster fracture propagationmodel and a perforation dynamic abrasion model. This approach relies on proper consideration of the multiphasenature of the considered problem and the interaction force between the involved fluid and solid phases. Accordingly,it can take into account the behavior of the gradually changing hole diameter due to proppant continuousperforation erosion. Moreover, it can provide useful information about the fluid-dynamic behavior of the consideredsystem before and after plugging. It is shown that when the diameter of the temporary plugging ball is1.2 times that of the perforation hole, the perforation holes of each cluster can be effectively blocked. 展开更多
关键词 Deep shale gas fracture propagation fluid mechanics fluid-solid coupling perforation hole abrasion
下载PDF
Experimental and numerical simulation study on the erosion behavior of the elbow of gathering pipeline in shale gas field
6
作者 En-Bin Liu Shen Huang +3 位作者 Ding-Chao Tian Lai-Min Shi Shan-Bi Peng He Zheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1257-1274,共18页
During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow... During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%. 展开更多
关键词 Shale gas gas gathering pipeline ELBOW EROSION CFD
下载PDF
Simulation of Two-Phase Flowback Phenomena in Shale Gas Wells
7
作者 Yongwei Duan Zhaopeng Zhu +2 位作者 Hui He Gaoliang Xuan Xuemeng Yu 《Fluid Dynamics & Materials Processing》 EI 2024年第2期349-364,共16页
The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework... The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells. 展开更多
关键词 Shale gas fracturingfluid backflow the stimulated reservoir volume gas-water two-phase production
下载PDF
Geochemistry, Petrology and Mineralogy of Coal Measure Shales in the Middle Jurassic Yanan Formation from Northeastern Ordos Basin, China: Implications for Shale Gas Accumulation 被引量:2
8
作者 CHEN Qian YAN Xiangbin +6 位作者 GUO Yuanling HONG Taiyuan NIE Haikuan ZHANG Jinchuan TANG Xuan LI Wanjun LIU Chong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第6期2333-2350,共18页
The Jurassic Yanan Formation is one of the most important coal-producing formations and hydrocarbon source rocks in the Ordos Basin, North China. To evaluate the shale gas potential of the Yanan shale, a total of 48 s... The Jurassic Yanan Formation is one of the most important coal-producing formations and hydrocarbon source rocks in the Ordos Basin, North China. To evaluate the shale gas potential of the Yanan shale, a total of 48 samples from north Ordos Basin were sampled, and their geochemical, petrological, mineralogical and pore characteristics were investigated. It was found that the shale samples are a suite of early mature source rock. The total organic carbon(TOC) content ranges from 0.33% to 24.12% and the hydrogen index(HI) ranges from 43.31 mg/g to 330.58 mg/g. The relationship between Tmax and HI indicates the organic matter is type Ⅱ-Ⅲ. This conclusion is also supported by the organic petrological examination results, which shows that the kerogen is mainly liptinite and vitrinite. Minerals in the samples are composed mainly of quartz, clay and feldspar, and the clay minerals are composed of prevailing kaolinite, illite/smectite, chlorite and a small amount of illite. Under scanning electron microscope, OM pores in the Yanan shale are scarce except pores come from the kerogen intrinsic texture or clay aggregates within the organic particles. As the weak compaction caused by shallow burial depth, interparticle pores and intraparticle pores are common, the hydrocarbon storage capacity of the Yanan shale was improved. According to evaluation, the Yanan shale is considered as a good shale gas reservoir, but its hydrocarbon potential is more dependent on biogenic and coal-derived gas as the thermogenic gas is limited by the lower thermal maturity. 展开更多
关键词 GEOCHEMISTRY MINERALOGY shale gas Yanan Formation Ordos Basin
下载PDF
Gas Occurrence and Accumulation Characteristics of Cambrian–Ordovician Shales in the Tarim Basin, Northwest China 被引量:2
9
作者 LIU Luofu WANG Ying +2 位作者 CHEN Yiting SHEN Baojian GAO Xiaoyue 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第5期1948-1958,共11页
The Tarim Basin is located in northwestern China and is the biggest basin in China with huge oil and gas resources. Especially the Lower to Middle Cambrian and Middle to Upper Ordovician possess the major marine sourc... The Tarim Basin is located in northwestern China and is the biggest basin in China with huge oil and gas resources. Especially the Lower to Middle Cambrian and Middle to Upper Ordovician possess the major marine source rocks in the Tarim Basin and have large shale gas resource potential. The Cambrian–Ordovician shales were mainly deposited in basin–slope facies with thicknesses between 30–180 m. For shales buried shallower than 4500 m, there is high organic matter abundance with TOC(total organic carbon) mainly between 1.0% and 6.0%, favorable organic matter of Type I and Type II, and high thermal maturity with RoE as 1.3%–2.75%. The mineral composition of these Cambrian–Ordovician shale samples is mainly quartz and carbonate minerals while the clay minerals content is mostly lower than 30%, because these samples include siliceous and calcareous shale and marlstone. The Cambrian and Ordovician shales are compacted with mean porosity of 4% and 3%, permeability of 0.0003×10^(-3)–0.09×10^(-3) μm^2 and 0.0002×10^(-3)–0.11×10^(-3) μm^2, and density of 2.30 g/m^3 and 2.55 g/m^3, respectively. The pores in the shale samples show good connectivity and are mainly mesopore in size. Different genetic types of pores can be observed such as intercrystal, intergranular, dissolved, organic matter and shrinkage joint. The reservoir bed properties are controlled by mineral composition and diagenesis. The maximum adsorption amount to methane of these shales is 1.15–7.36 cm^3/g, with main affecting factors being organic matter abundance, porosity and thermal maturity. The accumulation characteristics of natural gas within these shales are jointly controlled by sedimentation, diagenesis, hydrocarbon generation conditions, reservoir bed properties and the occurrence process of natural gas. The natural gas underwent short-distance migration and accumulation, in-place accumulation in the early stage, and adjustment and modification in the later stage. Finally, the Yulin(well Y1) and Tazhong(well T1) areas are identified as the targets for shale gas exploration in the Tarim Basin. 展开更多
关键词 shale gas occurrence accumulation Cambrian Ordovician Tarim Basin Urumqi China
下载PDF
Theory,technology and practice of shale gas three-dimensional development:A case study of Fuling shale gas field in Sichuan Basin,SW China 被引量:2
10
作者 SUN Huanquan CAI Xunyu +5 位作者 HU Degao LU Zhiyong ZHAO Peirong ZHENG Aiwei LI Jiqing WANG Haitao 《Petroleum Exploration and Development》 SCIE 2023年第3期651-664,共14页
In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is dif... In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is difficult.Based on the understanding of the main factors controlling shale gas enrichment and high production,the theory and technology of shale gas three-dimensional development,such as fine description and modeling of shale gas reservoir,optimization of three-dimensional development strategy,highly efficient drilling with dense well pattern,precision fracturing and real-time control,are discussed.Three-dimensional development refers to the application of optimal and fast drilling and volume fracturing technologies,depending upon the sedimentary characteristics,reservoir characteristics and sweet spot distribution of shale gas,to form"artificial gas reservoir"in a multidimensional space,so as to maximize the employed reserves,recovery factor and yield rate of shale gas development.In the research on shale gas three-dimensional development,the geological+engineering sweet spot description is fundamental,the collaborative optimization of natural fractures and artificial fractures is critical,and the improvement of speed and efficiency in drilling and fracturing engineering is the guarantee.Through the implementation of three-dimensional development,the overall recovery factor in the Jiaoshiba block has increased from 12.6%to 23.3%,providing an important support for the continuous and stable production of the Fuling shale gas field. 展开更多
关键词 shale gas three-dimensional development Fuling shale gas field Sichuan Basin fine reservoir description precision fracturing recoveryfactor
下载PDF
Shale gas transport in nanopores with mobile water films and water bridge 被引量:1
11
作者 Ran Li Zhangxin Chen +1 位作者 Keliu Wu Jinze Xu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1068-1076,共9页
Gas flow properties in nanopores are significantly determined by the flow patterns. Slug flow pattern is a potential water–gas two phase flow pattern, in which gas molecules flow in form of gas slugs and water molecu... Gas flow properties in nanopores are significantly determined by the flow patterns. Slug flow pattern is a potential water–gas two phase flow pattern, in which gas molecules flow in form of gas slugs and water molecules separate gas slugs. Considering water slippage, a portion of water molecules accumulates at the wall with lower mobility, while the remaining water molecules take the shape of a water bridge. Adopting foam apparent viscosity model to represent slug rheological behavior, how water bridge disturbs on gas flow capacity is estimated. The results are compared with the water–gas two phase flow model that assumes annular flow pattern as well as the single gas flow model without the consideration of water. The comparison illustrates that gas molecular movement is significantly hindered by flow space reduction and loss of gas slippage. The impact from water phase of slug flow pattern is more significant than that of annular flow pattern on gas flow capacity. It is discovered that larger nanopores improve gas flow capacity while maintaining bulk water layer thickness and increasing water bridge thickness tend to reduce gas transport ability. A better understanding of the structure and transport of water and gas molecules is conducive to figure out the specific gas–water flow behavior and predict shale gas production. 展开更多
关键词 Shale gas Water bridge Water film NANOPORE
下载PDF
Hybrid data-driven framework for shale gas production performance analysis via game theory, machine learning, and optimization approaches 被引量:1
12
作者 Jin Meng Yu-Jie Zhou +4 位作者 Tian-Rui Ye Yi-Tian Xiao Ya-Qiu Lu Ai-Wei Zheng Bang Liang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期277-294,共18页
A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis ca... A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis can be challenging because production performance is dominated by the complex interaction among a series of geological and engineering factors.In fact,each factor can be viewed as a player who makes cooperative contributions to the production payoff within the constraints of physical laws and models.Inspired by the idea,we propose a hybrid data-driven analysis framework in this study,where the contributions of dominant factors are quantitatively evaluated,the productions are precisely forecasted,and the development optimization suggestions are comprehensively generated.More specifically,game theory and machine learning models are coupled to determine the dominating geological and engineering factors.The Shapley value with definite physical meaning is employed to quantitatively measure the effects of individual factors.A multi-model-fused stacked model is trained for production forecast,which provides the basis for derivative-free optimization algorithms to optimize the development plan.The complete workflow is validated with actual production data collected from the Fuling shale gas field,Sichuan Basin,China.The validation results show that the proposed procedure can draw rigorous conclusions with quantified evidence and thereby provide specific and reliable suggestions for development plan optimization.Comparing with traditional and experience-based approaches,the hybrid data-driven procedure is advanced in terms of both efficiency and accuracy. 展开更多
关键词 Shale gas Production performance DATA-DRIVEN Dominant factors Game theory Machine learning Derivative-free optimization
下载PDF
Tectonic evolution and accumulation characteristics of Carboniferous shale gas in Yadu-Ziyun-Luodian aulacogen, Guizhou Province, South China 被引量:1
13
作者 Kun Yuan Wen-hui Huang +5 位作者 Ting Wang Shi-zhen Li Xiang-can Sun Xin-xin Fang Jun-ping Xiao Jun Guo 《China Geology》 CAS CSCD 2023年第4期646-659,共14页
The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zon... The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zone is considered a large intracontinental thrust-slip tectonic unit, which has undergone a long period of development. It was ultimately determined in the Yanshanian, where the typical Upper Paleozoic marine shales were deposited. In 2021, Well QSD-1 was deployed in the Liupanshui area at the northwest margin of the aulacogen, and obtained a daily shale gas flow of 11011 m3in the Carboniferous Dawuba Formation. It thus achieved a breakthrough in the invesgation of shale gas in the Lower Carboniferous in South China, revealing relatively good gas-bearing properties and broad exploration prospects of the aulacogen. Being different from the Lower Paleozoic strata in the Sichuan Basin and the Yichang area of the Middle Yangtze, the development of the Carboniferous Dawuba Formation in the aulacogen exhibits the following characteristics:(1) The Lower Carboniferous shale is thick and widely distributed, with interbedded shale and marlstone of virous thickness;(2) The total organic carbon(TOC) content of the shale in the Dawuba Formation ranges from 1% to 5%, with an average of 2%, and the thermal maturity of organic matter(Ro) varies from 1% to 4%, with an average of2.5%, indicating good hydrocarbon generation capacity;(3) The main shale in the aulacogen was formed during the fault subsidence stage from the Middle Devonian to the Early Permian. Although the strong compression and deformation during the late Indosinian-Himalayan played a certain role in destroying the formed shale gas reservoirs, comparative analysis suggests that the area covered by the current Triassic strata has a low degree of destruction. It therefore provides good conditions for shale gas preservation,which can be regarded as a favorable area for the next exploration. 展开更多
关键词 Shale gas AULACOGEN CARBONIFEROUS Shale and marlstone Organic carbon Organic matter Hydrocarbon generation capacity Tectonic evolution Accumulation characteristics
下载PDF
Theory and practice of unconventional gas exploration in carrier beds: Insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China 被引量:1
14
作者 GUO Tonglou XIONG Liang +3 位作者 YE Sujuan DONG Xiaoxia WEI Limin YANG Yingtao 《Petroleum Exploration and Development》 2023年第1期27-42,共16页
Unconventional gas in the Sichuan Basin mainly includes shale gas and tight gas.The development of shale gas is mainly concentrated in the Ordovician Wufeng Formation-Silurian Longmaxi Formation,but has not made any s... Unconventional gas in the Sichuan Basin mainly includes shale gas and tight gas.The development of shale gas is mainly concentrated in the Ordovician Wufeng Formation-Silurian Longmaxi Formation,but has not made any significant breakthrough in the Cambrian Qiongzhusi Formation marine shale regardless of exploration efforts for years.The commercial development of tight sandstone gas is mainly concentrated in the Jurassic Shaximiao Formation,but has not been realized in the widespread and thick Triassic Xujiahe Formation.Depending on the geological characteristics of the Qiongzhusi Formation and Xujiahe Formation,the feedback of old wells was analyzed.Then,combining with the accumulation mechanisms of con-ventional gas and shale gas,as well as the oil/gas shows during drilling,changes in production and pressure during develop-ment,and other characteristics,it was proposed to change the exploration and development strategy from source and reservoir exploration to carrier beds exploration.With the combination of effective source rock,effective carrier beds and effective sand-stone or shale as the exploration target,a model of unconventional gas accumulation and enrichment in carrier beds was built.Under the guidance of this study,two significant results have been achieved in practice.First,great breakthrough was made in exploration of the silty shale with low organic matter abundance in the Qiongzhusi Formation,which breaks the traditional approach to prospect shale gas only in organic-rich black shales and realizes a breakthrough in new areas,new layers and new types of shale gas and a transformation of exploration and development of shale gas from single-layer system,Longmaxi For-mation,to multi-layer system in the Sichuan Basin.Second,exploration breakthrough and high-efficient development were re-alized for difficult-to-produce tight sandstone gas reserves in the Xujiahe Formation,which helps address the challenges of low production and unstable production of fracture zones in the Xujiahe Formation,promote the transformation of tight sandstone gas from reserves without production to effective production,and enhance the exploration and development potential of tight sandstonegas. 展开更多
关键词 Sichuan Basin carrier bed tight gas shale gas silty shale Cambrian Qiongzhusi Formation Triassic Xujiahe Formation
下载PDF
Analysis of fracture propagation and shale gas production by intensive volume fracturing 被引量:1
15
作者 Qingdong ZENG Long BO +4 位作者 Lijun LIU Xuelong LI Jianmeng SUN Zhaoqin HUANG Jun YAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1385-1408,共24页
This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation... This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method(DDM)and the Picard iterative method.The shale gas flow considers multiple transport mechanisms,and the flow in the fracture network is handled by the embedded discrete fracture model(EDFM).A series of numerical simulations are conducted to analyze the effects of the cluster number,stage spacing,stress difference coefficient,and natural fracture distribution on the stimulated fracture area,fractal dimension,and cumulative gas production,and their correlation coefficients are obtained.The results show that the most influential factors to the stimulated fracture area are the stress difference ratio,stage spacing,and natural fracture density,while those to the cumulative gas production are the stress difference ratio,natural fracture density,and cluster number.This indicates that the stress condition dominates the gas production,and employing intensive volume fracturing(by properly increasing the cluster number)is beneficial for improving the final cumulative gas production. 展开更多
关键词 fracture network propagation shale gas fow intensive volume fracturing displacement discontinuity method(DDM) embedded discrete fracture model(EDFM)
下载PDF
Closed-system pyrolysis-based hydrocarbon generation simulation and gas potential evaluation of the Shanxi Formation shales from the Ordos Basin, China
16
作者 Xiaobo Guo Baohong Shi +6 位作者 Yu Li Yanxia Li Jianbo Sun Gang Liu Jintao Yin Hongzhu Wu Xi Jin 《Energy Geoscience》 2022年第1期8-16,共9页
The Shanxi Formation(Shan 1 and Shan 2 Members)shales show good prospects in shale gas development in the Yan'an area of Ordos Basin.Based on the simulation experiment of hydrocarbon generation of low maturity sha... The Shanxi Formation(Shan 1 and Shan 2 Members)shales show good prospects in shale gas development in the Yan'an area of Ordos Basin.Based on the simulation experiment of hydrocarbon generation of low maturity shale samples,the hydrocarbon generation characteristics of shale samples was studied systematically.Then,combined with the geochemical analysis of shale and gas generation simulation,shale gas potential was evaluated.The results reveal that Shan 1 and Shan 2 shale samples are favorable for shale gas enrichment by and large,with C_(1)-C_(5) maximum yields of 146.96-160.83 mg/g TOC and 148.48-148.67 mg/g TOC respectively at a heat rate of 20℃/h and 2℃/h.The Shan 1 and Shan 2 shales are basically the same in terms of organic carbon production potential of each unit.The carbon isotopic composition of alkane gas reveals that heteroatomic compounds(NSOs)cracking is an important mechanism for shale gas generation of Shanxi Formation shales,and conducive to gas generation at highto over-mature stages.Given thermal history and kinetic parameters of hydrocarbon generation,the shales of Shanxi Formation reached the maximum gas production potential in the Late Cretaceous,with a maximum yield of 160.3 mg/g TOC under present geological conditions.During geological history,the Shanxi Formation shales went through high-to over-maturity evolution,mainly producing dry gas,and their gas generation capacity was controlled by the organic matter abundance and cracking capacity.The gas generation potential of Shan 2 shale is higher than that of Shan 1,due to its higher TOC. 展开更多
关键词 Shale gas Hydrocarbon generation Shanxi formation shales Yan'an area Ordos basin
下载PDF
Gas storage in shale pore system:A review of the mechanism,control and assessment
17
作者 Yue Feng Xian-Ming Xiao +3 位作者 En-Ze Wang Ping Gao Chen-Gang Lu Gang Li 《Petroleum Science》 SCIE EI CSCD 2023年第5期2605-2636,共32页
In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas ex... In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas exploration potential,the gas-bearing properties of shale(quantity,storage state,composition)and their controlling factors are the essential research attracting wide attention in the academic community.This paper reviews the research progress on the retention mechanism,influencing factors,and evaluation methods for resource potential of the shale gas system,and proposes further research directions.Sorption is the main mechanism of gas retention in organic-rich shales;the gas is mainly stored in nanopores of shale in free and sorption states.The presence of water and nonhydrocarbon gases in pores can complicate the process and mechanism of methane(CH4)sorption,and the related theoretical models still need further development.The in-situ gas content and gasbearing properties of shale are governed by the geological properties(organic matter abundance,kerogen type,thermal maturity,mineral composition,diagenesis),the properties of fluids in pores(water,CH_(4),non-hydrocarbon gases),and geological conditions(temperature,pressure,preservation conditions)of the shale itself.For a particular basin or block,it is still challenging to define the main controlling factors,screen favorable exploration areas,and locate sweet spots.Compared to marine shales with extensive research and exploration data,lacustrine and marine-continental transitional shales are a further expanding area of investigation.Various methods have been developed to quantitatively characterize the in-situ gas content of shales,but all these methods have their own limitations,and more in-depth studies are needed to accurately evaluate and predict the in-situ gas content of shales,especially shales at deep depth. 展开更多
关键词 Shale gas Retention mechanism Multi-component adsorption Influencing factors Evaluation method
下载PDF
Interpretable machine learning optimization(InterOpt)for operational parameters:A case study of highly-efficient shale gas development
18
作者 Yun-Tian Chen Dong-Xiao Zhang +1 位作者 Qun Zhao De-Xun Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1788-1805,共18页
An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a ne... An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells. 展开更多
关键词 Interpretable machine learning Operational parameters optimization Shapley value Shale gas development Neural network
下载PDF
A Productivity Prediction Method Based on Artificial Neural Networks and Particle Swarm Optimization for Shale-Gas Horizontal Wells
19
作者 Bin Li 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2729-2748,共20页
In order to overcome the deficiencies of current methods for the prediction of the productivity of shale gas hor-izontal wells after fracturing,a new sophisticated approach is proposed in this study.This new model stem... In order to overcome the deficiencies of current methods for the prediction of the productivity of shale gas hor-izontal wells after fracturing,a new sophisticated approach is proposed in this study.This new model stems from the combination several techniques,namely,artificial neural network(ANN),particle swarm optimization(PSO),Imperialist Competitive Algorithms(ICA),and Ant Clony Optimization(ACO).These are properly implemented by using the geological and engineering parameters collected from 317 wells.The results show that the optimum PSO-ANN model has a high accuracy,obtaining a R2 of 0.847 on the testing.The partial dependence plots(PDP)indicate that liquid consumption intensity and the proportion of quartz sand are the two most sensitive factors affecting the model’s performance. 展开更多
关键词 Shale gas productivity prediction ANN meta-heuristic algorithm PDP
下载PDF
Accumulation and exploration enlightenment of shallow normal-pressure shale gas in southeastern Sichuan Basin, SW China
20
作者 YUN Lu 《Petroleum Exploration and Development》 SCIE 2023年第6期1308-1319,共12页
Based on the drilling, logging, experimental and testing data of Well PD1, a shallow normal-pressure shale gas well in the Laochangping anticline in southeastern Sichuan Basin, the shallow shale gas reservoirs of the ... Based on the drilling, logging, experimental and testing data of Well PD1, a shallow normal-pressure shale gas well in the Laochangping anticline in southeastern Sichuan Basin, the shallow shale gas reservoirs of the Ordovician Wufeng Formation to Silurian Longmaxi Formation (Wufeng-Longmaxi) were investigated in terms of geological characteristics, occurrence mechanism, and adsorption-desorption characteristics, to reveal the enrichment laws and high-yield mechanism of shallow normal-pressure shale gas in complex structure areas. First, the shallow shale gas reservoirs are similar to the medium-deep shale gas reservoirs in static indicators such as high-quality shale thickness, geochemistry, physical properties and mineral composition, but the former is geologically characterized by low formation pressure coefficient, low gas content, high proportion of adsorbed gas, low in-situ stress, and big difference between principal stresses. Second, shallow shales in the complex structure areas have the gas occurrence characteristics including low total gas content (1.1-4.8 m3/t), high adsorbed gas content (2.5-2.8 m3/t), low sensitive desorption pressure (1.7-2.5 MPa), and good self-sealing. Third, the adsorbed gas enrichment of shales is mainly controlled by organic matter abundance, formation temperature and formation pressure: the higher the organic matter abundance and formation pressure, the lower the formation temperature and the higher the adsorption capacity, which is more beneficial for the adsorbed gas occurrence. Fourth, the shallow normal-pressure shale gas corresponds to low sensitive desorption pressure. The adsorbed gas can be rapidly desorbed and recovered when the flowing pressure is reduced below the sensitive desorption pressure. Fifth, the exploration breakthrough of Well PD1 demonstrates that the shallow complex structure areas with adsorbed gas in dominance can form large-scale shale reservoirs, and confirms the good exploration potential of shallow normal-pressure shale gas in the margin of the Sichuan Basin. 展开更多
关键词 shallow normal-pressure shale gas adsorbed gas ADSORPTION-DESORPTION sensitive desorption pressure Ordovician Wufeng-Silurian Longmaxi Sichuan Basin
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部